in

Assessing the response of micro-eukaryotic diversity to the Great Acceleration using lake sedimentary DNA

[adace-ad id="91168"]
  • 1.

    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Keeler, B. L. et al. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl Acad. Sci. USA 109, 18619–18624 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    PubMed  Google Scholar 

  • 4.

    Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Boyle, J. F., Chiverrell, R. C., Davies, H. & Alderson, D. M. An approach to modelling the impact of prehistoric farming on Holocene landscape phosphorus dynamics. Holocene 25, 203–214 (2015).

    ADS  Google Scholar 

  • 6.

    Steffen, W., Crutzen, P. J. & McNeill, J. R. The anthropocene: are humans now overwhelming the great forces of nature. AMBIO J. Hum. Environ. 36, 614–621 (2007).

    CAS  Google Scholar 

  • 7.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the anthropocene: the great acceleration. Anthr. Rev. 2, 81–98 (2015).

    Google Scholar 

  • 8.

    Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Jenny, J.-P. et al. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc. Natl Acad. Sci. USA 113, 12655–12660 (2016).

    CAS  PubMed  Google Scholar 

  • 10.

    O’Beirne, M. D. et al. Anthropogenic climate change has altered primary productivity in Lake Superior. Nat. Commun. 8, 15713 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Smol, J. P. Under the radar: long-term perspectives on ecological changes in lakes. Proc. R. Soc. B Biol. Sci. 286, 20190834 (2019).

    CAS  Google Scholar 

  • 12.

    Payne, R. J. Seven reasons why protists make useful bioindicators. Acta Protozool. 52, 105–113 (2013).

  • 13.

    Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 58, 1–21 (2017).

    ADS  Google Scholar 

  • 14.

    Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 20, 541–544 (2005).

    PubMed  Google Scholar 

  • 15.

    Pedersen, M. W. et al. Ancient and modern environmental DNA. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130383 (2015).

    Google Scholar 

  • 16.

    Coolen, M. J. L. et al. Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc. Natl Acad. Sci. USA 110, 8609–8614 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    Capo, E. et al. Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Mol. Ecol. 25, 5925–5943 (2016).

    CAS  PubMed  Google Scholar 

  • 18.

    Capo, E. et al. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environ. Microbiol. 19, 2873–2892 (2017).

    CAS  PubMed  Google Scholar 

  • 19.

    Capo, E. et al. How does environmental inter-annual variability shape aquatic microbial communities? A 40-year annual record of sedimentary DNA from a Boreal Lake (Nylandssjön, Sweden). Front. Ecol. Evol. 7, 245 (2019).

    ADS  Google Scholar 

  • 20.

    Coolen, M. J. L. et al. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet. Sci. Lett. 223, 225–239 (2004).

    ADS  CAS  Google Scholar 

  • 21.

    Boere, A. C. et al. Late-Holocene succession of dinoflagellates in an Antarctic fjord using a multi-proxy approach: paleoenvironmental genomics, lipid biomarkers and palynomorphs. Geobiology 7, 265–281 (2009).

    CAS  PubMed  Google Scholar 

  • 22.

    Kopf, R. K., Finlayson, C. M., Humphries, P., Sims, N. C. & Hladyz, S. Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. BioScience 65, 798–811 (2015).

    Google Scholar 

  • 23.

    Smol, J. P. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective (Wiley-Blackwell, 2008).

  • 24.

    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).

    PubMed  Google Scholar 

  • 25.

    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Dornelas, M. et al. Assemblage Time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Charles, S. C. The value of microorganisms. Environ. Ethics 27, 375–390 (2005).

    Google Scholar 

  • 28.

    Bodelier, P. Toward understanding, managing, and protecting microbial ecosystems. Front. Microbiol. 2, 1–8 (2011).

    Google Scholar 

  • 29.

    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).

    Google Scholar 

  • 31.

    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).

    ADS  PubMed  Google Scholar 

  • 32.

    Leu, M., Hanser, S. E. & Knick, S. T. The human footprint in the West: a large-scale analysis of anthropogenic impacts. Ecol. Appl. 18, 1119–1139 (2008).

    PubMed  Google Scholar 

  • 33.

    Müller, B., Lotter, A. F., Sturm, M. & Ammann, A. Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquat. Sci. 60, 316–337 (1998).

    Google Scholar 

  • 34.

    Weckström, K. et al. Impacts of climate warming on Alpine lake biota over the past decade. Arct. Antarct. Alp. Res. 48, 361–376 (2016).

    Google Scholar 

  • 35.

    Sadro, S., Melack, J. M., Sickman, J. O. & Skeen, K. Climate warming response of mountain lakes affected by variations in snow. Limnol. Oceanogr. Lett. 4, 9–17 (2019).

    Google Scholar 

  • 36.

    More, K. D., Giosan, L., Grice, K. & Coolen, M. J. L. Holocene paleodepositional changes reflected in the sedimentary microbiome of the Black Sea. Geobiology 17, 436–448 (2019).

    PubMed  Google Scholar 

  • 37.

    Li, F., Zhang, X., Xie, Y. & Wang, J. Sedimentary DNA reveals over 150 years of ecosystem change by human activities in Lake Chao, China. Environ. Int. 133, 105214 (2019).

    CAS  PubMed  Google Scholar 

  • 38.

    Jones, J. & Brett, M. T. in Global Environmental Change (ed. Freedman, B.) 273–279 (Springer Netherlands, 2014).

  • 39.

    De Senerpont Domis, L. N., Van de Waal, D. B., Helmsing, N. R., Van Donk, E. & Mooij, WolfM. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics. Ecology 95, 1485–1495 (2014).

    Google Scholar 

  • 40.

    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    CAS  PubMed  Google Scholar 

  • 41.

    Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. & Pace, M. L. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277, 248–251 (1997).

    CAS  Google Scholar 

  • 42.

    Anderson, N. J., Heathcote, A. J. & Engstrom, D. R., Globocarb Data Contributors. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Sci. Adv. 6, eaaw2145 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Laplace-Treyture, C. & Feret, T. Performance of the Phytoplankton Index for Lakes (IPLAC): a multimetric phytoplankton index to assess the ecological status of water bodies in France. Ecol. Indic. 69, 686–698 (2016).

    CAS  Google Scholar 

  • 44.

    Carpenter, S. R. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc. Natl Acad. Sci. USA 102, 10002–10005 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    Jensen, J. P., Jeppesen, E., Olrik, K. & Kristensen, P. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish Lakes. Can. J. Fish. Aquat. Sci. 51, 1692–1699 (1994).

    Google Scholar 

  • 46.

    Naselli-Flores, L. & Barone, R. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438, 65–74 (2000).

    CAS  Google Scholar 

  • 47.

    Fee, E. J. A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol. Oceanogr. 24, 401–416 (1979).

    ADS  CAS  Google Scholar 

  • 48.

    Engstrom, D. R., Schottler, S. P., Leavitt, P. R. & Havens, K. E. A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records. Ecol. Appl. 16, 1194–1206 (2006).

    PubMed  Google Scholar 

  • 49.

    Londeix, L., Herreyre, Y., Turon, J.-L. & Fletcher, W. Last glacial to holocene hydrology of the Marmara Sea inferred from a dinoflagellate cyst record. Rev. Palaeobot. Palynol. 158, 52–71 (2009).

    Google Scholar 

  • 50.

    Waibel, A., Peter, H. & Sommaruga, R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat. Sci. 81, 45 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Edwards, K. F. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proc. Natl Acad. Sci. USA 116, 6211–6220 (2019).

    CAS  PubMed  Google Scholar 

  • 52.

    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Change Biol. 22, 228–236 (2016).

    ADS  Google Scholar 

  • 54.

    Rahel, F. J. Homogenization of fish faunas across the United States. Science 288, 854–856 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 55.

    Nielsen, T. F., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).

    Google Scholar 

  • 56.

    Petsch, D. K. Causes and consequences of biotic homogenization in freshwater ecosystems. Int. Rev. Hydrobiol. 101, 113–122 (2016).

    Google Scholar 

  • 57.

    Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317 (2018).

    PubMed  Google Scholar 

  • 58.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Litchman, E. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems: Invasive microbes. Ecol. Lett. 13, 1560–1572 (2010).

    PubMed  Google Scholar 

  • 60.

    Wilkinson, D. M. Have we underestimated the importance of humans in the biogeography of free-living terrestrial microorganisms? J. Biogeogr. 37, 393–397 (2010).

    Google Scholar 

  • 61.

    Jenny, J.-P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Change Biol. 22, 1481–1489 (2016).

    ADS  Google Scholar 

  • 62.

    Birks, H. H. & Birks, H. J. B. Multi-proxy studies in palaeolimnology. Veg. Hist. Archaeobot. 15, 235–251 (2006).

    Google Scholar 

  • 63.

    Gast, R. J., Dennett, M. R. & Caron, D. A. Characterization of Protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70, 2028–2037 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Van de Peer, Y., De Rijk, P., Wuyts, J., Winkelmans, T. & De Wachter, R. The European small subunit ribosomal RNA database. Nucleic Acids Res. 28, 175–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Mangot, J.-F. et al. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes: Short-term dynamics of small eukaryotes. Environ. Microbiol. 15, 1745–1758 (2013).

    CAS  PubMed  Google Scholar 

  • 67.

    Taib, N., Mangot, J.-F., Domaizon, I., Bronner, G. & Debroas, D. Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PLoS ONE 8, e58950 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).

    CAS  PubMed  Google Scholar 

  • 70.

    McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).

    Google Scholar 

  • 71.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 1.17–10 (2011).

  • 72.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 73.

    Anderson, M. J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet  PubMed  MATH  Google Scholar 

  • 74.

    Therneau, T., Atkinson, B. & Ripley, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1–13. (2018).

  • 75.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Peering into peer review

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia