Biological rhythms in the deep-sea hydrothermal mussel Bathymodiolus azoricus

  • 1.

    Kumar, V. Biological Timekeeping. (Springer, India, 2017). .

  • 2.

    Tessmar-Raible, K., Raible, F. & Arboleda, E. Another place, another timer: marine species and the rhythms of life. Bioessays 33, 165–172 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    de la Iglesia, H. O. & Johnson, C. H. Biological clocks: riding the tides. Curr. Biol. 23, R921–R923 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Oosthuizen, M. K., Cooper, H. M. & Bennett, N. C. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (Family: Bathyergidae). J. Biol. Rhythms 18, 481–490 (2003).

    PubMed  Google Scholar 

  • 5.

    van Oort, B. E. H. et al. Circadian organization in reindeer. Nature 438, 1095–1096 (2005).

    ADS  PubMed  Google Scholar 

  • 6.

    Childress, J. J. & Thuesen, E. V. in Deep-Sea Food Chains and the Global Carbon Cycle (eds. Rowe, G. T. & Pariente, V.) 217–236 (Springer, Netherlands, 1992).

  • 7.

    Turekian, K. K. et al. Slow growth rate of a deep-sea clam determined by 228Ra chronology. Proc. Natl Acad. Sci. USA 72, 2829–2832 (1975).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Levin, L. A. et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front. Marine Sci. (2016).

  • 9.

    Du Preez, C. & Fisher, C. R. Long-term stability of back-arc basin hydrothermal vents. Front. Marine Sci. (2018).

  • 10.

    Cuvelier, D. et al. Community dynamics over 14 years at the Eiffel Tower hydrothermal edifice on the Mid-Atlantic Ridge. Limnol. Oceanogr. 56, 1624–1640 (2011).

    ADS  Google Scholar 

  • 11.

    Garrett, C. Internal tides and ocean mixing. Science 301, 1858–1859 (2003).

    CAS  PubMed  Google Scholar 

  • 12.

    Childress, J. J. & Fisher, C. R. The biology of hydrothermal vent animals: Physiology, biochemistry, and autotrophic symbioses. Oceanogr. Mar. Biol. Ann. Rev. 30, 337–441 (1992).

  • 13.

    Barreyre, T. et al. Temporal variability and tidal modulation of hydrothermal exit-fluid temperatures at the Lucky Strike deep-sea vent field, Mid-Atlantic Ridge: MAR vent-field temperature monitoring. J. Geophys. Res.: Solid Earth 119, 2543–2566 (2014).

    ADS  Google Scholar 

  • 14.

    Lelièvre, Y. et al. Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates. Proc. R. Society B: Biol. Sci. 284, 20162123 (2017).

  • 15.

    Cuvelier, D., Legendre, P., Laes, A., Sarradin, P.-M. & Sarrazin, J. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field – a multidisciplinary deep-sea observatory approach. PLoS ONE 9, e96924 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Cuvelier, D., Legendre, P., Laës-Huon, A., Sarradin, P.-M. & Sarrazin, J. Biological and environmental rhythms in (dark) deep-sea hydrothermal ecosystems. Biogeosciences 14, 2955–2977 (2017).

    ADS  Google Scholar 

  • 17.

    Nedoncelle, K. et al. Bathymodiolus growth dynamics in relation to environmental fluctuations in vent habitats. Deep Sea Res. Part I: Oceanographic Res. Pap. 106, 183–193 (2015).

    ADS  Google Scholar 

  • 18.

    Chiesa, J. J., Aguzzi, J., García, J. A., Sardà, F. & de la Iglesia, H. O. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J. Biol. Rhythms 25, 277–287 (2010).

    PubMed  Google Scholar 

  • 19.

    Sbragaglia, V. et al. Identification, characterization, and diel pattern of expression of canonical clock genes in Nephrops norvegicus (Crustacea: Decapoda) eyestalk. PLOS ONE 10, e0141893 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Modica, L., Cartes, J. E. & Carrassón, M. Food consumption of five deep-sea fishes in the Balearic Basin (western Mediterranean Sea): are there daily feeding rhythms in fishes living below 1000 m?: feeding rhythm and rations in deep-sea fishes. J. Fish. Biol. 85, 800–820 (2014).

    CAS  PubMed  Google Scholar 

  • 21.

    Wagner, H.-J., Kemp, K., Mattheus, U. & Priede, I. G. Rhythms at the bottom of the deep sea: cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep Sea Res. Part I: Oceanographic Res. Pap. 54, 1944–1956 (2007).

    ADS  Google Scholar 

  • 22.

    Hui, M., Song, C., Liu, Y., Li, C. & Cui, Z. Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis. PLoS ONE 12, e0178417 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Mercier, A. & Hamel, J.-F. in Annual, Lunar, and Tidal Clocks: Patterns and Mechanisms of Nature’s Enigmatic Rhythms (eds. Numata, H. & Helm, B.) 99–120 (Springer, Japan, 2014).

  • 24.

    Husson, B., Sarradin, P.-M., Zeppilli, D. & Sarrazin, J. Picturing thermal niches and biomass of hydrothermal vent species. Deep Sea Res. Part II: Topical Stud. Oceanogr. 137, 6–25 (2017).

    ADS  Google Scholar 

  • 25.

    Duperron, S. in The Vent and Seep Biota: Aspects from Microbes to Ecosystems (ed. Kiel, S.) 137–167 (Springer, Netherlands, 2010).

  • 26.

    Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).

    CAS  PubMed  Google Scholar 

  • 27.

    Gosling, E. M. Marine Bivalve Molluscs. (Wiley Blackwell, 2015).

  • 28.

    Takeuchi, T. et al. Draft genome of the Pearl Oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res. 19, 117–130 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2012).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    PubMed  Google Scholar 

  • 31.

    Ponnudurai, R. et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Standards Genomic Sci. 12, 50 (2017).

    Google Scholar 

  • 32.

    Takishita, K. et al. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biol. Evolution 9, 1148–1160 (2017).

    Google Scholar 

  • 33.

    Payton, L. et al. Remodeling of the cycling transcriptome of the oyster Crassostrea gigas by the harmful algae Alexandrium minutum. Sci. Rep. 7, 3480 (2017).

    Google Scholar 

  • 34.

    Sorek, M. et al. Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome 6, 83 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythms 29, 391–400 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Ren, Y., Hong, C. I., Lim, S. & Song, S. Finding clocks in genes: a bayesian approach to estimate periodicity. BioMed. Res. Int. 2016, 1–14 (2016).

    Google Scholar 

  • 37.

    Radford-Knoery, J. et al. Distribution of dissolved sulfide, methane, and manganese near the seafloor at the Lucky Strike (37°17′N) and Menez Gwen (37°50′N) hydrothermal vent sites on the mid-Atlantic Ridge. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 367–386 (1998).

    ADS  CAS  Google Scholar 

  • 38.

    Waeles, M. et al. On the early fate of hydrothermal iron at deep-sea vents: a reassessment after in situ filtration: Fe Sulfide Precipitation Is Very Limited. Geophys. Res. Lett. 44, 4233–4240 (2017).

    ADS  Google Scholar 

  • 39.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Google Scholar 

  • 40.

    Sung, Windsor & Morgan, J. J. Kinetics and product of ferrous iron oxygenation in aqueous systems. Environ. Sci. Technol. 14, 561–568 (1980).

    ADS  CAS  Google Scholar 

  • 41.

    Tapley, D. W., Buettner, G. R. & Shick, J. M. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol. Bull. 196, 52–56 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Hayden, M. S. & Ghosh, S. Signaling to NF-kappaB. Genes Dev. 18, 2195–2224 (2004).

    CAS  PubMed  Google Scholar 

  • 43.

    Courtial, L. et al. The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells. Sci. Rep. 7, 45713 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Praveen, K. & Saxena, N. Crosstalk between Fas and JNK determines lymphocyte apoptosis after ionizing radiation. Radiat. Res. 179, 725–736 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    Distel, D. L. et al. Do mussels take wooden steps to deep-sea vents? Nature 403, 725–726 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 445–462 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Connor, K. M. & Gracey, A. Y. Circadian cycles are the dominant transcriptional rhythm in the intertidal mussel Mytilus californianus. Proc. Natl Acad. Sci. USA 108, 16110–16115 (2011).

  • 48.

    Gracey, A. Y. et al. Rhythms of gene expression in a fluctuating intertidal environment. Curr. Biol. 18, 1501–1507 (2008).

    CAS  PubMed  Google Scholar 

  • 49.

    White, S. N., Chave, A. D., Reynolds, G. T. & Van Dover, C. L. Ambient light emission from hydrothermal vents on the Mid-Atlantic Ridge. Geophys. Res. Lett. 29, 34-1–34-4 (2002).

    Google Scholar 

  • 50.

    Devey, C., Fisher, C. & Scott, S. Responsible science at hydrothermal vents. Oceanography 20, 162–171 (2007).

    Google Scholar 

  • 51.

    Hughes, M. E. et al. Guidelines for genome-scale analysis of biological rhythms. J. Biol. Rhythms 32, 380–393 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Yoo, S.-H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 53.

    Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Li, J., Grant, G. R., Hogenesch, J. B. & Hughes, M. E. Considerations for RNA-seq analysis of circadian rhythms. Methods Enzymol. 551, 349–367 (2015).

  • 55.

    O’Neill, J. S. & Reddy, A. B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Rey, G. et al. Metabolic oscillations on the circadian time scale in Drosophila cells lacking clock genes. Mol. Syst. Biol. 14, e8376 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Zhang, L. et al. Dissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra. Curr. Biol. 23, 1863–1873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Zantke, J. et al. Circadian and Circalunar Clock Interactions in a Marine Annelid. Cell Rep. 5, 99–113 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Mat, A. M., Perrigault, M., Massabuau, J.-C. & Tran, D. Role and expression of cry1 in the adductor muscle of the oyster Crassostrea gigas during daily and tidal valve activity rhythms. Chronobiol. Int. 33, 949–963 (2016).

    CAS  PubMed  Google Scholar 

  • 60.

    O’Neill, J. S. et al. Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra. Curr. Biol. 25, R326–R327 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Schnytzer, Y. et al. Tidal and diel orchestration of behaviour and gene expression in an intertidal mollusc. Sci. Rep. 8, 4917 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Saurel, C., Gascoigne, J. C., Palmer, M. R. & Kaiser, M. J. In situ mussel feeding behavior in relation to multiple environmental factors: regulation through food concentration and tidal conditions. Limnol. Oceanogr. 52, 1919–1929 (2007).

    ADS  Google Scholar 

  • 63.

    Comeau, L. A., Babarro, J. M. F., Longa, A. & Padin, X. A. Valve-gaping behavior of raft-cultivated mussels in the Ría de Arousa, Spain. Aquac. Rep. 9, 68–73 (2018).

    Google Scholar 

  • 64.

    Connor, K. M. & Gracey, A. Y. High-resolution analysis of metabolic cycles in the intertidal mussel Mytilus californianus. Am. J. Physiol.-Regulatory, Integr. Comp. Physiol. 302, R103–R111 (2012).

    CAS  Google Scholar 

  • 65.

    Ameyaw-Akumfi, C. & Naylor, E. Temporal patterns of shell-gape in Mytilus edulis. Mar. Biol. 95, 237–242 (1987).

    Google Scholar 

  • 66.

    Chapman, E. C., O’Dell, A. R., Meligi, N. M., Parsons, D. R. & Rotchell, J. M. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol. Int. 34, 1300–1314 (2017).

    CAS  PubMed  Google Scholar 

  • 67.

    Mat, A. M., Massabuau, J.-C., Ciret, P. & Tran, D. Looking for the clock mechanism responsible for circatidal behavior in the oyster Crassostrea gigas. Mar. Biol. 161, 89–99 (2014).

    Google Scholar 

  • 68.

    Tran, D., Perrigault, M., Ciret, P. & Payton, L. Bivalve mollusc circadian clock genes can run at tidal frequency. Proc. R. Soc. B 287, 20192440 (2020).

    PubMed  Google Scholar 

  • 69.

    Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    CAS  PubMed  Google Scholar 

  • 70.

    Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 71.

    Sarrazin, J. et al. TEMPO: a new ecological module for studying deep-sea community dynamics at hydrothermal vents. in OCEANS 2007 – Europe 1–4 (IEEE, 2007).

  • 72.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Dutilleul, P. Multi-frequential periodogram analysis and the detection of periodic components in time series. Commun. Stat. – Theory Methods 30, 1063–1098 (2001).

    MathSciNet  MATH  Google Scholar 

  • 74.

    Johnson, C. H., Elliott, J., Foster, R., Honma, K.-I. & Kronauer, R. in Chronobiology: Biological Timekeeping (eds. Dunlap, J. C., Loros, J. J. & DeCoursey, P. J.) 406 (Sinauer Associates, Inc. Publishers, 2004).

  • 75.

    Pegau, W. S., Gray, D. & Zaneveld, J. R. V. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. Appl. Opt. 36, 6035–6046 (1997).

    ADS  CAS  PubMed  Google Scholar 

  • 76.

    Francis, W. R. et al. A comparison across non-model animals suggests an optimal sequencing depth for de novo transcriptome assembly. BMC Genomics 14, 167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol. (2016).

  • 78.

    Cabau, C. et al. Compacting and correcting Trinity and Oases RNA-Seq de novo assemblies. PeerJ 5, e2988 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 79.

    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    CAS  PubMed  Google Scholar 

  • 80.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 81.

    R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).

  • 82.

    Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).

    CAS  PubMed  Google Scholar 

  • 83.

    Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.36.0. (2019).

  • 84.

    Finn, R. D. et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285 (2016).

    CAS  PubMed  Google Scholar 

  • 85.

    Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evolution 30, 772–780 (2013).

    CAS  Google Scholar 

  • 86.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evolution 32, 268–274 (2015).

    CAS  Google Scholar 

  • 87.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  PubMed  Google Scholar 

  • 88.

    Oliveri, P. et al. The Cryptochrome/Photolyase Family in aquatic organisms. Mar. Genomics 14, 23–37 (2014).

    PubMed  Google Scholar 

  • Source: Ecology -

    MIT research on seawater surface tension becomes international guideline

    Echolocation at high intensity imposes metabolic costs on flying bats