in

Brown rats and house mice eavesdrop on each other’s volatile sex pheromone components

[adace-ad id="91168"]
  • 1.

    Wyatt, T. D. Pheromones and Animal Behavior 104 (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 2.

    Hughes, N. K., Korpimäki, E. & Banks, P. B. The predation risks of interspecific eavesdropping: weasel-vole interactions. Oikos 119, 1210–1216 (2010).

    Article  Google Scholar 

  • 3.

    Garvey, P. M. et al. Exploiting interspecific olfactory communication to monitor predators. Ecol. Appl. 27, 389–402 (2017).

    PubMed  Article  Google Scholar 

  • 4.

    Parsons, M. H. et al. Biologically meaningful scents: a framework for understanding predator–prey research across disciplines. Biol. Rev. 93, 98–114 (2018).

    PubMed  Article  Google Scholar 

  • 5.

    Varner, E., Gries, R., Takács, S., Fan, S. & Gries, G. Identification and field testing of volatile components in the sex attractant pheromone blend of female house mice. J. Chem. Ecol. 45, 18–27 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Takács, S., Gries, R., Zhai, H. & Gries, G. The sex attractant pheromone of male brown rats: identification and field experiment. Angew. Chemie Int. Ed. 55, 6062–6066 (2016).

    Article  CAS  Google Scholar 

  • 7.

    Din, W. et al. Origin and radiation of the house mouse: clues from nuclear genes. J. Evol. Biol. 9, 519–539 (1996).

    CAS  Article  Google Scholar 

  • 8.

    Puckett, E. E. et al. Global population divergence and admixture of the brown rat (Rattus norvegicus). Proc. R. Soc. B Biol. Sci. 283, 20161762 (2016).

    Article  Google Scholar 

  • 9.

    Karli, P. The Norway rat’s killing response to the white mouse: an experimental analysis. Source Behav. 102, 81–103 (1956).

    Google Scholar 

  • 10.

    Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Slotnick, B. Animal cognition and the rat olfactory system. Med. J. Aust. 5, 216–222 (2001).

    CAS  Google Scholar 

  • 12.

    Hughes, N. K., Price, C. J. & Banks, P. B. Predators are attracted to the olfactory signals of prey. PLoS ONE 5, e13114 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Osada, K., Tashiro, T., Mori, K. & Izumi, H. The identification of attractive volatiles in aged male mouse urine. Chem. Senses 33, 815–823 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Kavaliers, M., Choleris, E. & Pfaff, D. W. Recognition and avoidance of the odors of parasitized conspecifics and predators: differential genomic correlates. Neurosci. Biobehav. Rev. 29, 1347–1359 (2005).

    PubMed  Article  Google Scholar 

  • 15.

    Hurst, J. L. The complex network of olfactory communication in populations of wild house mice Mus domesticus Rutty: urine marking and investigation within family groups. Anim. Behav. 37, 705–725 (1989).

    Article  Google Scholar 

  • 16.

    Mossman, C. A. & Drickamer, L. C. Odor preferences of female house mice (Mus domesticus) in seminatural enclosures. J. Comp. Psychol. 110, 131–138 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Jones, R. B. & Nowell, N. W. Aversive and aggression-promoting properties of urine from dominant and subordinate male mice. Anim. Learn. Behav. 1, 207–210 (1973).

    Article  Google Scholar 

  • 18.

    Barnard, C. J. & Fitzsimons, J. Kin recognition and mate choice in mice: the effects of kinship, familiarity and social interference on intersexual interaction. Anim. Behav. 36, 1078–1090 (1988).

    Article  Google Scholar 

  • 19.

    He, J., Ma, L., Kim, S., Nakai, J. & Yu, C. R. R. Encoding gender and individual information in the mouse vomeronasal organ. Science 320, 535–538 (2008).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Yang, M. et al. The rat exposure test: a model of mouse defensive behaviors. Physiol. Behav. 81, 465–473 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Amaral, V. C. S., Santos Gomes, K. & Nunes-de-Souza, R. L. Increased corticosterone levels in mice subjected to the rat exposure test. Horm. Behav. 57, 128–133 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Takács, S., Gries, R. & Gries, G. Sex hormones function as sex attractant pheromones in house mice and brown rats. ChemBioChem 18, 1391–1395 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 23.

    Jemiolo, B., Alberts, J., Sochinski-Wiggins, S., Harvey, S. & Novotny, M. Behavioural and endocrine responses of female mice to synthetic analogues of volatile compounds in male urine. Anim. Behav. 33, 1114–1118 (1985).

    Article  Google Scholar 

  • 24.

    Novotny, M. et al. Synthetic pheromones that promote inter-male aggression in mice. Proc. Natl. Acad. Sci. USA 82, 2059–2061 (1985).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 25

    Banks, P. B., Daly, A. & Bytheway, J. P. Predator odours attract other predators, creating an olfactory web of information. Biol. Lett. 12, 20151053 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Roitberg, B. D. Chemical communication. In Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds Córdoba-Aguilar, A. et al.) 557–575 (Oxford University Press, Oxford, 2018).

    Google Scholar 

  • 27

    Vasudevan, A. & Vyas, A. Kairomonal communication in mice is concentration-dependent with a proportional discrimination threshold. F1000Research 2, 195 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Danci, A., Schaefer, P. W., Schopf, A. & Gries, G. Species-specific close-range sexual communication systems prevent cross-attraction in three species of Glyptapanteles parasitic wasps (Hymenoptera: Braconidae). Biol. Control 39, 225–231 (2006).

    Article  Google Scholar 

  • 29

    Wen, X.-L.L., Wen, P., Dahlsjö, C., Sillam-Dussès, D. & Šobotník, J. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey. Proc. R. Soc. B Biol. Sci. 284, 20170121 (2017).

    Article  CAS  Google Scholar 

  • 30.

    Haynes, K. F. & Yeargan, K. V. Exploitation of intraspecific communication systems: illicit signalers and receivers. Ann. Entomol. Soc. Am 92, 960–970 (1999).

    Article  Google Scholar 

  • 31.

    Dong, S. et al. Olfactory eavesdropping of predator alarm pheromone by sympatric but not allopatric prey. Anim. Behav. 141, 115–125 (2018).

    Article  Google Scholar 

  • 32.

    Sbarbati, A. & Osculati, F. Allelochemical communication in vertebrates: kairomones, allomones and synomones. Cells Tissues Organs 183, 206–219 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Apps, P., Rafiq, K. & McNutt, J. W. Do carnivores have a world wide web of interspecific scent signals? in Chemical Signals in Vertebrates (ed. Buesching, C. D.) 182–202 (2019).

  • 34.

    Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & Mcgregor, I. S. The effects of predator odors in mammalian prey species: a review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).

    PubMed  Article  Google Scholar 

  • 35

    Jones, M. E. et al. A nose for death: Integrating trophic and informational networks for conservation and management. Front. Ecol. Evol. 4, 124 (2016).

    Article  Google Scholar 

  • 36

    McGregor, P. K. Communication networks and eavesdropping in animals. In Encyclopedia of Neuroscience (ed. Larry, R. S.) 1179–1184 (Academic Press, Cambridge, 2009).

    Google Scholar 

  • 37.

    Peake, T. M. Eavesdropping in communication networks. in Animal Communication Networks (ed. McGregor, P. K.) 13–37 (2005).

  • 38.

    Tsunoda, M. et al. Identification of an intra- and inter-specific tear protein signal in rodents. Curr. Biol. 28, 1213–1223 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Ardeh, M. J., De Jong, P. W. D., Loomans, A. J. M. & Van Lenteren, J. C. Inter- and intraspecific effects of volatile and nonvolatile sex pheromones on males, mating behavior, and hybridization in Eretmocerus mundus and E. eremicus (Hymenoptera: Aphelinidae). J. Insect Behav. 17, 745–759 (2004).

    Article  Google Scholar 

  • 40.

    Ylönen, H., Sundell, J., Tiilikainen, R., Eccard, J. A. & Horne, T. Weasels’ (Mustela nivalis nivalis) preference for olfactory cues of the vole (Clethrionomys glareolus). Ecology 84, 1447–1452 (2003).

    Article  Google Scholar 

  • 41.

    Zhang, Y.-H.H., Liang, H.-C.C., Guo, H.-L.L. & Zhang, J.-X.X. Exaggerated male pheromones in rats may increase predation cost. Curr. Zool. 62, 431–437 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Hughes, N. K., Kelley, J. L. & Banks, P. B. Receiving behaviour is sensitive to risks from eavesdropping predators. Oecologia 160, 609–617 (2009).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Koivula, M., Korpimäki, E. & Korpimaki, E. Do scent marks increase predation risk of microtine rodents?. Oikos 95, 275–281 (2001).

    Article  Google Scholar 

  • 44.

    May, M. D., Bowen, M. T., Mcgregor, I. S. & Timberlake, W. Rubbings deposited by cats elicit defensive behavior in rats. Physiol. Behav. 107, 711–718 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Schwende, F. J., Wiesler, D., Jorgenson, J. W., Carmack, M. & Novotny, M. Urinary volatile consituents of the house mouse, Mus musculus, and their endocrine dependency. J. Chem. Ecol. 12, 277–296 (1986).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Musso, A. E., Gries, R., Zhai, H., Takács, S. & Gries, G. Effect of male house mouse pheromone components on behavioral responses of mice in laboratory and field experiments. J. Chem. Ecol. 43, 215–224 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Ferrero, D. M. et al. Detection and avoidance of a carnivore odor by prey. PNAS 108, 11235–11240 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Wolff, J. O. Laboratory studies with rodents: facts or artifacts? Bioscience 53, 421 (2003).

    Article  Google Scholar 

  • 49.

    Calisi, R. M. & Bentley, G. E. Lab and field experiments: are they the same animal? Horm. Behav. 56, 1–10 (2009).

    PubMed  Article  Google Scholar 

  • 50.

    Kondrakiewicz, K., Kostecki, M., Szadzińska, W. & Knapska, E. Ecological validity of social interaction tests in rats and mice. Genes Brain Behav. 18, 1–14 (2019).

    Article  Google Scholar 

  • 51.

    de Masi, E., Vilaça, P. & Razzolini, M. T. P. Environmental conditions and rodent infestation in Campo Limpo district, São Paulo municipality, Brazil. Int. J. Environ. Health Res. 19, 1–16 (2009).

    PubMed  Article  Google Scholar 

  • 52.

    Stryjek, R., Mioduszewska, B., Spaltabaka-Gędek, E. & Juszczak, G. R. Wild norway rats do not avoid predator scents when collecting food in a familiar habitat: a field study. Sci. Rep. 8, 1–11 (2018).

    CAS  Article  Google Scholar 

  • 53.

    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).

    PubMed  Article  Google Scholar 

  • 54.

    Pérez-Gómez, A. et al. Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr. Biol. 25, 1340–1346 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Isogai, Y. et al. Molecular organization of vomeronasal chemoreception. Nature 478, 241–245 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Bacchini, A., Gaetani, E. & Cavaggioni, A. Pheromone binding proteins of the mouse, Mus musculus. Experientia 48, 419–421 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Novotny, M. V., Ma, W., Wiesler, D. & Žídek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. B Biol. Sci. 266, 2017–2022 (1999).

    CAS  Article  Google Scholar 

  • 58.

    Hurst, J., Robertson, D., Tolladay, U. & Beynon, R. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Beynon, R. J. & Hurst, J. L. Urinary proteins and the modulation of chemical scents in mice and rats. Peptides 25, 1553–1563 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Caut, S. et al. Rats dying for mice: modelling the competitor release effect. Austral. Ecol. 32, 858–868 (2007).

    Article  Google Scholar 

  • 61.

    Campbell-Palmer, R. & Rosell, F. The importance of chemical communication studies to mammalian conservation biology: a review. Biol. Conserv. 144, 1919–1930 (2011).

    Article  Google Scholar 

  • 62.

    Sparrow, E. E., Parsons, M. H. & Blumstein, D. T. Novel use for a predator scent: preliminary data suggest that wombats avoid recolonising collapsed burrows following application of dingo scent. Aust. J. Zool. 64, 192–197 (2016).

    Article  Google Scholar 

  • 63.

    Friesen, M. R., Beggs, J. R. & Gaskett, A. C. Sensory-based conservation of seabirds: a review of management strategies and animal behaviours that facilitate success. Biol. Rev. 92, 1769–1784 (2017).

    PubMed  Article  Google Scholar 

  • 64.

    Campbell-Palmer, R. & Rosell, F. Conservation of the Eurasian beaver Castor fiber: an olfactory perspective. Mamm. Rev. 40, 293–312 (2010).

    Article  Google Scholar 

  • 65.

    Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 66.

    BirdLife International. State of the world’s birds: taking the pulse of the planet. (2018).

  • 67.

    Courchamp, F., Langlais, M. & Sugihara, G. Cats protecting birds: modelling the mesopredator release effect. J. Anim. Ecol. 68, 282–292 (1999).

    Article  Google Scholar 

  • 68.

    MacInnes, C. D. et al. Elimination of rabies from red foxes in eastern Ontario. J. Wildl. Dis. 37, 119–132 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Takács, S. et al. New food baits for trapping house mice, black rats and brown rats. Appl. Anim. Behav. Sci. 200, 130–135 (2017).

    Article  Google Scholar 

  • 70.

    Safranski, T. J., Lamberson, W. R. & Keisler, D. H. Correlations among three measures of puberty in mice and relationships with estradiol concentration and ovulation. Biol. Reprod. 48, 669–673 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Schneider, J. E., Wysocki, C. J., Nyby, J. & Whitney, G. Determining the sex of neonatal mice (Mus musculus). Behav. Res. Methods Instrum. 10, 105 (1978).

    Article  Google Scholar 

  • 72.

    Dhakal, P. & Soares, M. J. Single-step PCR-based genetic sex determination of rat tissues and cells. Biotechniques 62, 232–233 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 73.

    Varner, E, Gries, R. & Gries, G. Attractant blend composition, devices and methods for attracting female mice. US provisional patent application (filed 17 August 2020; Patent App. Serial No. 63/066,716) (2020).

  • 74.

    R Core Team. R: A language and environment for statistical computing. (2019).


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal