in

Dependency of Queensland and the Great Barrier Reef’s tropical fisheries on reef-associated fish

[adace-ad id="91168"]
  • 1.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).

    Google Scholar 

  • 3.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Richardson, L. E., Graham, N. A., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).

    ADS  Article  Google Scholar 

  • 6.

    Robinson, J. P. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    McClanahan, T., Allison, E. H. & Cinner, J. E. Managing fisheries for human and food security. Fish Fish. 16, 78–103 (2015).

    Article  Google Scholar 

  • 8.

    Hanich, Q. et al. Small-scale fisheries under climate change in the Pacific Islands region. Mar. Policy 88, 279–284 (2018).

    Article  Google Scholar 

  • 9.

    Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Change 3, 591 (2013).

    ADS  Article  Google Scholar 

  • 10.

    Sale, P. F. & Hixon, M. A. in Interrelationships Between Corals and Fisheries (ed S.A. Bortone) 7–18 (CRC Press, Boca Raton, 2015).

  • 11.

    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).

    Article  Google Scholar 

  • 12.

    Brown, C. J. et al. The assessment of fishery status depends on fish habitats. Fish Fish. 20, 1–14. https://doi.org/10.1111/faf.12318 (2019).

    CAS  Article  Google Scholar 

  • 13.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373 (2017).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Pratchett, M. S. et al. Effects of climate change on coral grouper (Plectropomus spp) and possible adaptation options. Rev. Fish Biol. Fish. 27, 297–316 (2017).

    Article  Google Scholar 

  • 15.

    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234. https://doi.org/10.1038/s41586-018-0476-5 (2018).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Cheal, A. J., MacNeil, M. A., Emslie, M. J. & Sweatman, H. The threat to coral reefs from more intense cyclones under climate change. Glob. Change Biol. 23, 1511–1524 (2017).

    ADS  Article  Google Scholar 

  • 17.

    Wilson, L. J. et al. Climate-driven changes to ocean circulation and their inferred impacts on marine dispersal patterns. Glob. Ecol. Biogeogr. 25, 923–939. https://doi.org/10.1111/geb.12456 (2016).

    Article  Google Scholar 

  • 18.

    Brown, C. J. et al. Habitat change mediates the response of coral reef fish populations to terrestrial run-off. Mar. Ecol. Prog. Ser. 576, 55–68 (2017).

    ADS  Article  Google Scholar 

  • 19.

    Great Barrier Reef Foundation. www.barrierreef.org (2020).

  • 20.

    State of Queensland. Reef 2050 Water Quality Improvement Plan 2017–2020 (Queensland Government, Brisbane, 2018).

    Google Scholar 

  • 21.

    Jiddawi, N. S. & Öhman, M. C. Marine fisheries in Tanzania. Ambio 31, 518–527 (2002).

    Article  PubMed  Google Scholar 

  • 22.

    Nordlund, L. M., Unsworth, R. K., Gullström, M. & Cullen-Unsworth, L. C. Global significance of seagrass fishery activity. Fish Fish. 19, 399–412. https://doi.org/10.1111/faf.12259 (2018).

    Article  Google Scholar 

  • 23.

    State of Queensland Department of Agriculture Fisheries and Forestry. QFish data cube. https://qfish.fisheries.qld.gov.au/ (2020).

  • 24.

    Taylor, S., Webley, J. & McInnes, K. 2010 Statewide Recreational Fishing Survey (Queensland Government, Brisbane, 2012).

    Google Scholar 

  • 25.

    Anderson, S. C. et al. Benefits and risks of diversification for individual fishers. Proc. Natl. Acad. Sci. 114, 10797–10802 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Fulton, C. J. et al. Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes. Fish Fish. https://doi.org/10.1111/faf.12455 (2020).

    Article  Google Scholar 

  • 27.

    Graham, N. A. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007).

    Article  PubMed  Google Scholar 

  • 28.

    Pratchett, M. S. et al. Bleaching susceptibility of aquarium corals collected across northern Australia. Coral Reefs 39, 663–673 (2020).

    Article  Google Scholar 

  • 29.

    Delbeek, J. C. in Biology of Butterflyfishes (eds MS Pratchett, Michael L Berumen, & B Kapoor) 292–395 (CRC Press, Boca Raton, 2013).

  • 30.

    Wilson, S. K., Graham, N. A. & Pratchett, M. S. in Biology of Butterflyfishes (eds MS Pratchett, Michael L Berumen, & B Kapoor) 226–245 (CRC Press, Boca Raton, 2013).

  • 31.

    Beldade, R., Blandin, A., O’Donnell, R. & Mills, S. C. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nat. Commun. 8, 716 (2017).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Donnelly, R. Stewardship Action Plan 2013: Mitigating Ecological Risk in a Changing Climate (Pro-Vision Reef Inc., Cairns, 2013).

    Google Scholar 

  • 33.

    Leigh, G. M., Campbell, A. B., Lunow, C. P. & O’Neill, M. F. Stock Assessment of the Queensland East Coast Common Coral Trout (Plectropomus leopardus) fishery (Queensland Government, Brisbane, 2014).

    Google Scholar 

  • 34.

    Russell, D. & Garrett, R. Use by juvenile barramundi, Lates calcarifer (Bloch), and other fishes of temporary supralittoral habitats in a tropical estuary in northern Australia. Mar. Freshw. Res. 34, 805–811 (1983).

    Article  Google Scholar 

  • 35.

    Eriksson, H., Fabricius-Dyg, J., Lichtenberg, M., Perez-Landa, V. & Byrne, M. Biology of a high-density population of Stichopus herrmanni at One Tree Reef, Great Barrier Reef, Australia. SPC Beche-de-mer Information Bulletin 30, 41–45 (2010).

    Google Scholar 

  • 36.

    Wen, C., Pratchett, M., Almany, G. & Jones, G. Patterns of recruitment and microhabitat associations for three predatory coral reef fishes on the southern Great Barrier Reef, Australia. Coral Reefs 32, 389–398. https://doi.org/10.1007/s00338-012-0985-x (2013).

    ADS  Article  Google Scholar 

  • 37.

    Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    DNRME. Reefs and Shoals—Queensland. (2018).

  • 39.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 71, 319–392 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  • 40.

    Teixeira, D., Zischke, M. T. & Webley, J. A. Investigating bias in recreational fishing surveys: Fishers listed in public telephone directories fish similarly to their unlisted counterparts. Fish. Res. 181, 127–136 (2016).

    Article  Google Scholar 

  • 41.

    Webley, J., McInnes, K., Teixeira, D., Lawson, A. & Quinn, R. 2014 Statewide Recreational Fishing Survey (Queensland Government, Brisbane, 2015).

    Google Scholar 

  • 42.

    Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. 117, 2218–2224 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Millar, R. B. & Meyer, R. Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 49, 327–342 (2000).

    MathSciNet  MATH  Article  Google Scholar 

  • 44.

    Meynecke, J.-O., Lee, S. Y., Duke, N. C. & Warnken, J. Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia. Estuar. Coast. Shelf Sci. 69, 491–504 (2006).

    ADS  Article  Google Scholar 

  • 45.

    Mercier, A., Battaglene, S. C. & Hamel, J.-F. Settlement preferences and early migration of the tropical sea cucumber Holothuria scabra. J. Exp. Mar. Biol. Ecol. 249, 89–110 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Campbell, A., Leigh, G., Bessel-Browne, P. & Lovett, R. Stock assessment of the Queensland east coast common coral trout (Plectropomus leopardus) fishery. April 2019. (State of Queensland., Brisbane, 2019).

  • 47.

    Leigh, G., Williams, A., Begg, G., Gribble, N. & Whybird, O. Stock Assessment of the Queensland East Coast Red Throat Emperor (Lethrinus miniatus), Queensland Department of Primary Industries and Fisheries, Brisbane (Queensland Government, Brisbane, 2006).

    Google Scholar 

  • 48.

    Rudd, M. B. & Branch, T. A. Does unreported catch lead to overfishing?. Fish Fish. 18, 313–323 (2017).

    Article  Google Scholar 

  • 49.

    Hempson, T. N. et al. Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol. Evol. 7, 2626–2635 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Williamson, D. H., Ceccarelli, D. M., Evans, R. D., Jones, G. P. & Russ, G. R. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities. Ecol. Evol. 4, 337–354 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).

    Article  Google Scholar 

  • 52.

    Graham, N. & Nash, K. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326. https://doi.org/10.1007/s00338-012-0984-y (2013).

    ADS  Article  Google Scholar 

  • 53.

    Robinson, J. P. et al. Diversification insulates fisher catch and revenue in heavily exploited tropical fisheries. Sci. Adv. 6, eaaz0587 (2020).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Edgar, G. J., Ward, T. J. & Stuart-Smith, R. D. Rapid declines across Australian fishery stocks indicate global sustainability targets will not be achieved without an expanded network of ‘no-fishing’reserves. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1337–1350 (2018).

    Article  Google Scholar 

  • 55.

    Johansen, J. et al. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean. Sci. Rep. 5, 13830 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 56.

    Clark, T. D., Messmer, V., Tobin, A. J., Hoey, A. S. & Pratchett, M. S. Rising temperatures may drive fishing-induced selection of low-performance phenotypes. Sci. Rep. 7, 1–11 (2017).

    Article  CAS  Google Scholar 

  • 57.

    Brodeur, R. D., Hunsicker, M. E., Hann, A. & Miller, T. W. Effects of warming ocean conditions on feeding ecology of small pelagic fishes in a coastal upwelling ecosystem: a shift to gelatinous food sources. Mar. Ecol. Prog. Ser. 617, 149–163 (2019).

    ADS  Article  Google Scholar 

  • 58.

    Krieger, J. R., Beaudreau, A. H., Heintz, R. A. & Callahan, M. W. Growth of young-of-year sablefish (Anoplopoma fimbria) in response to temperature and prey quality: insights from a life stage specific bioenergetics model. J. Exp. Mar. Biol. Ecol. 526, 151340 (2020).

    Article  Google Scholar 

  • 59.

    Ryan, S. Ecological assessment of the Queensland East Coast Spanish Mackerel fishery. 103 (Queensland Government, Department of Primary Industries and Fisheries, Brisbane, Queensland, 2004).

  • 60.

    Rogers, A. & Mumby, P. J. Mangroves reduce the vulnerability of coral reef fisheries to habitat degradation. PLoS Biol. 17, e3000510. https://doi.org/10.1371/journal.pbio.3000510 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Dee, L., Karr, K., Landesberg, C. & Thornhill, D. Assessing vulnerability of fish in the U.S. marine aquarium trade. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00527 (2019).

    Article  Google Scholar 

  • 63.

    Plagányi, É. E., Skewes, T., Murphy, N., Pascual, R. & Fischer, M. Crop rotations in the sea: Increasing returns and reducing risk of collapse in sea cucumber fisheries. Proc. Natl. Acad. Sci. 112, 6760–6765 (2015).

    ADS  Article  CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach