in

Development of microsatellite loci and optimization of a multiplex assay for Latibulus argiolus (Hymenoptera: Ichneumonidae), the specialized parasitoid of paper wasps

[adace-ad id="91168"]
  • 1.

    Makino, S. Biology of Latibulus argiolus (Hymenoptera, Ichneumonidae), a Parasitoid of the Paper Wasp Polistes biglumis (Hymenoptera, Vespidae). Kontyû 51, 426–434 (1983).

    Google Scholar 

  • 2.

    Oh, S.-H., An, S.-L. & Lee, J.-W. Review of Korean Latibulus (Hymenoptera: Ichneumonidae: Cryptinae) and a key to the world species. Can. Entomol. 144, 509–525 (2012).

    Article  Google Scholar 

  • 3.

    Quicke, D. L. J. The Braconid and Ichneumonid Parasitoid Wasps: Biology Systematics, Evolution and Ecology (Wiley Blackwell, Amsterdam, 2015).

    Google Scholar 

  • 4.

    Paukku, S. & Kotiaho, J. S. Female oviposition decisions and their impact on progeny life-history traits. J. Insect Behav. 21, 505–520 (2008).

    Article  Google Scholar 

  • 5.

    Rusina, L. Y. The role of parasitoids in regulation of Polistes Wasp population (Hymenoptera, Vespidae: Polistinae). Entomol. Rev. 93, 271–280 (2012).

    Article  Google Scholar 

  • 6.

    Coelho, N. H. P. et al. Understanding genetic diversity, spatial genetic structure, and mating system through microsatellite markers for the conservation and sustainable use of Acrocomia aculeata (Jacq.) Lodd. Ex Mart. Conserv. Genet. 19, 879–891 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Manlik, O. et al. Demography and genetics suggest reversal of dolphin source-sink dynamics, with implications for conservation. Mar. Mammal Sci. 35, 732–759 (2019).

    Article  Google Scholar 

  • 8.

    Nowicki, P. et al. What keeps “living dead” alive: demography of a small and isolated population of Maculinea (=Phengaris) alcon. J. Insect Conserv. 23, 201–210 (2019).

    Article  Google Scholar 

  • 9.

    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).

    Article  Google Scholar 

  • 10.

    Olafsson, K., Hjorleifsdottir, S., Pampoulie, C., Hreggvidsson, G. O. & Gudjonsson, S. Novel set of multiplex assays (SalPrint15) for efficient analysis of 15 microsatellite loci of contemporary samples of the Atlantic salmon (Salmo salar). Mol. Ecol. Resour. 10, 533–537 (2010).

    CAS  Article  Google Scholar 

  • 11.

    Randi, E. et al. Multilocus detection of wolf x dog hybridization in Italy, and guidelines for marker selection. PLoS ONE 9, e86409 (2014).

    ADS  Article  Google Scholar 

  • 12.

    Hung, C.-M., Yu, A.-Y., Lai, Y.-T. & Shaner, P.-J.L. Developing informative microsatellite markers for nonmodel species using reference mapping against a model species’ genome. Sci. Rep. 6, 23087 (2016).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Marcus, T., Assmann, T., Durka, W. & Drees, C. A suite of multiplexed microsatellite loci for the ground beetle Abax parallelepipedus (Piller and Mitterpacher, 1783) (Coleoptera, Carabidae). Conserv. Genet. Resour. 5, 1151–1156 (2013).

    Article  Google Scholar 

  • 14.

    Panagiotopoulou, H., Baca, M., Baca, K., Stanković, A. & Żmihorski, M. Optimization and validation of a multiplex assay for microsatellite loci analysis in the field cricket, Gryllus campestris (Orthoptera: Gryllidae). J. Asia-Pac. Entomol. 18, 421–424 (2015).

    CAS  Article  Google Scholar 

  • 15.

    PacBio Pacific Biosciences, Procedure & Checklist: 2 kb Template Preparation and Sequencing. https://www.pacb.com/wp-content/uploads/2015/09/Procedure-Checklist-2-kb-Template-Preparation-and-Sequencing.pdf.

  • 16.

    Faircloth, B. C. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94 (2008).

    CAS  Article  Google Scholar 

  • 17.

    Zhang, Z., Schwartz, S., Wagner, L. & Webb, M. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).

    CAS  Article  Google Scholar 

  • 18.

    Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics 24, 1757–1764 (2008).

    CAS  Article  Google Scholar 

  • 19.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    CAS  Article  Google Scholar 

  • 20.

    Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).

    CAS  Article  Google Scholar 

  • 21.

    Austin, J. D. et al. Permanent genetic resources added to Molecular Ecology Resources Database 1 February 2011–31 March 2011. Mol. Ecol. Resour. 11, 757–758 (2011).

    CAS  Article  Google Scholar 

  • 22.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).

    CAS  Article  Google Scholar 

  • 23.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article  Google Scholar 

  • 24.

    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).

    Article  Google Scholar 

  • 25.

    Rousset, F. GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    Article  Google Scholar 

  • 26.

    Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225 (1989).

    Article  Google Scholar 

  • 27.

    Pompanon, F., Bonin, A., Bellemain, E. & Taberlet, P. Genotyping errors: causes, consequences and solutions. Nat. Rev. Genet. 6, 846–847 (2005).

    Article  Google Scholar 

  • 28.

    Grohme, M. A., Soler, R. F., Wink, M. & Frohme, M. Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS. Biotechniques 55, 253–256 (2013).

    CAS  Article  Google Scholar 

  • 29.

    Liljegren, M. M., de Muinck, E. J. & Trosvik, P. Microsatellite length scoring by single molecule real time sequencing-effects of sequence structure and PCR regime. PLoS ONE 11, e0159232 (2016).

    Article  Google Scholar 

  • 30.

    Dutta, N. et al. Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology. Mol. Biol. Rep. 46, 41–49 (2018).

    Article  Google Scholar 

  • 31.

    Wei, N., Bemmels, J. B. & Dick, C. W. The effects of read length, quality and quantity on microsatellite discovery and primer development: from Illumina to Pac Bio. Mol. Ecol. Resour. 14, 953–965 (2014).

    CAS  PubMed  Google Scholar 

  • 32.

    Corner, S., Yuzbasiyan-Gurkan, V., Agnew, D. & Venta, P. J. Development of a 12-plex of new microsatellite markers using a novel universal primer method to evaluate the genetic diversity of jaguars (Panthera onca) from North American zoological institutions. Conservation Genet. Resour. 11, 487–497 (2019).

    Article  Google Scholar 

  • 33.

    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).

    CAS  Article  Google Scholar 

  • 34.

    Blondin, L. et al. Characterization and comparison of microsatellite markers derived from genomic and expressed libraries for the desert locust. J. Appl. Entomol. 137, 673–683 (2013).

    Article  Google Scholar 

  • 35.

    Chistiakov, D. A., Hellemans, B. & Volckaert, F. A. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture 255, 1–29 (2006).

    CAS  Article  Google Scholar 

  • 36.

    Cheng, L., Zhang, Y., Lu, C.-Y., Li, C. & Sun, X.-W. Development and characterization of four moderate multiplex microsatellite panels in crucian carp (Carassius auratus). Conserv. Genet. Resour. 5, 821–823 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Validating the physics behind the new MIT-designed fusion experiment

    Utilizing conductivity of seawater for bioelectric measurement of fish