in

Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra

[adace-ad id="91168"]
  • 1.

    Gemede, H. F., Ratta, N., Haki, G. D., Woldegiorgis, A. Z. & Beyen, F. Nutritional quality and health benefits of “okra” (Abelmoschus esculentus): A review. Int. J. Nutr. Food Sci. 4(2), 208–215 (2015).

    CAS  Google Scholar 

  • 2.

    Adekiya, A. O., Aboyeji, C. M., Dunsin, O., Adebiyi, O. V. & Oyinlola, O. T. Effect of urea fertilizer and maize cob ash on soil chemical properties, growth, yield, and mineral composition of okra, Abelmoschus esculentus (L.) Moench. J. Hortic. Res. 26(1), 67–76. https://doi.org/10.2478/johr-2018-0008 (2018).

    CAS  Article  Google Scholar 

  • 3.

    Oyolu, C. Okra seeds: Potential source of high quality vegetable oil. in Proceedings of 5th Annual Conference Horticulture Society,Nigeria, Nsukka (1983).

  • 4.

    Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., Dunsin, O. & Ugbe, J. O. Green manures and NPK fertilizer effects on soil properties, growth, yield, mineral and vitamin C composition of okra (Abelmoschus esculentus(L.) Moench). J. Saudi Soc. Agric. Sci. 18, 218–223. https://doi.org/10.1016/j.jssas.2017.05.005 (2019).

    Article  Google Scholar 

  • 5.

    Oladipo, O. G., Olayinka, A. & Aduayi, E. A. Effects of organic amendments on microbial activity, N and P mineralization in an Alfisol. Environ. Manage. J. 2, 30–40 (2005).

    Google Scholar 

  • 6.

    Maheswarappa, H. P., Nanjappa, H. V., Hegde, M. R. & Prabhu, S. R. Influence of planting material, plant population and organic manures on yield of East Indian galangal (Kaempferia galanga), soil physico-chemical and biological properties. Indian J. Agron. 44(3), 651–657 (1999).

    Google Scholar 

  • 7.

    Olowoake, A. A. Influence of organic, mineral and organomineral fertilizers on growth, yield, and soil properties in grain amaranth (Amaranthus cruentus L.). J. Org. 1(1), 39–47 (2014).

    Google Scholar 

  • 8.

    Agbede, T. M. & Adekiya, A. O. Effect of wood ash, poultry manure and NPK fertilizer on soil and leaf nutrient composition, growth and yield of okra (Abelmoschus esculentus). Emirate J. Food Agric. 24(4), 314–321 (2012).

    Google Scholar 

  • 9.

    Khandaker, M. M., Jusoh, N., Ralmi, N. H. A. & Ismail, S. Z. The effect of different types of organic fertilizers on growth and yield of Abelmoschus esculentus L. Moench (okra). Bulg. J. Agric. Sci. 23(1), 119–125 (2017).

    Google Scholar 

  • 10.

    Tiamiyu, R. A., Ahmed, H. G. & Muhammad, A. S. Effect of sources of organic manure on growth and yields of okra (Abelmoschus esculentus L.) in Sokoto, Nigeria. Niger. J. Basic Appl. Sci. 20(3), 213–216 (2012).

    Google Scholar 

  • 11.

    Fagwalawa, L. D. & Yahaya, S. M. Effect organic manure on the growth and yield of okra. Imperial J. Interdiscipl. Res. 2(3), 130–133 (2016).

    Google Scholar 

  • 12.

    Akinrinde, E. A. & Obigbesan, G. O. Evaluation of the fertility status of selected soils for crop production in five ecological zones of Nigeria. In Proceedings of the 26th Annual Conference of Soil Science Society of Nigeria (ed. Babalola, O.) 279–288 (University of Agriculture, Ibadan, 2000).

    Google Scholar 

  • 13.

    Mbah, C. N. & Mbagwu, J. S. C. Effect of organic wastes on physiochemical properties up a dystrice leptosol and maize yield in southeastern—Nigeria. Niger. J. Soil Sci. 16, 96–103 (2006).

    Google Scholar 

  • 14.

    Adekiya, A. O. Legume mulch materials and poultry manure affect soil properties, and growth and fruit yield of tomato. Agric. Conspect. Sci. 83(2), 161–167 (2018).

    Google Scholar 

  • 15.

    Agbede, T. M., Adekiya, A. O. & Ogeh, J. S. Response of soil properties and yam yield to Chromolaena odorata (Asteraceae) and Tithonia diversifolia (Asteraceae) mulches. Arch. Agron. Soil Sci. 60(2), 209–224 (2014).

    Google Scholar 

  • 16.

    Wolf, B. & Snyder, G. H. Sustainable Soils: The Place of Organic Matter in Sustaining Soils and Their Productivity (The Haworth Press Inc., New York, 2003).

    Google Scholar 

  • 17.

    Togun, A. O., Akanbi, W. B. & Adediran, J. A. Growth, nutrient uptake and yield of tomato in response to different plant residue composts. J. Food Agric. Environ. 2(1), 310–316 (2004).

    Google Scholar 

  • 18.

    Olaniyi, J. O., Akanbi, W. B., Oladiran, O. A. & Ilupeju, O. T. The effect of organo-mineral and inorganic fertilizers on the growth, fruit yield, quality and chemical compositions of Okra. J. Anim. Plant Sci. 1, 1135–1140 (2010).

    Google Scholar 

  • 19.

    Ajari, O., Tsado, L. E. K., Oladiran, J. A. & Salako, E. A. Plant height and fruit yield of okra as affected by field application of fertilizer and organic matter in Bida, Nigeria. Niger. Agric. J. 34, 74–80 (2003).

    Google Scholar 

  • 20.

    Adekiya, A. O., Agbede, T. M., Aboyeji, C. M. & Dunsin, O. Response of okra (Abelmoschus esculentus (L.) Moench) and soil properties to different mulch materials in different cropping seasons. Sci. Hortic. 217, 209–216 (2017).

    CAS  Google Scholar 

  • 21.

    Adekiya, A. O., Agbede, T. M. & Ojeniyi, S. O. The effect of three years of tillage and poultry manure application on soil and plant nutrient composition, growth and yield of cocoyam. Exp. Agric. 52, 466–476 (2016).

    Google Scholar 

  • 22.

    Agbede, O. O. Understanding Soil and Plant Nutrition (Petra Digital Press, Abuja, 2009).

    Google Scholar 

  • 23.

    Oyenuga, V.A. & Fetuga, B.I. Dietary importance of fruits and vegetables. in Proceeding First National Seminar on Fruits and Vegetables, 122–131. University of Ibadan. October 13–17 (1975).

  • 24.

    Rubatizky, V. E. & Yamaguchi, M. World Vegetables: Principles, Production and Nutritive Values 2nd edn. (International Thomas Publishing, Chapman and Hall, New York, 1997).

    Google Scholar 

  • 25.

    Blumenthal, J., Battenspenrger, D., Cassman, K. G., Mason, K. G. & Pavlista, A. Importance of nitrogen on crop quality and health. In Nitrogen in the Environment: Sources, Problems and Management 2nd edn (eds Hatfield, J. L. & Folett, R. F.) (Elsevier, Amsterdam, 2008).

    Google Scholar 

  • 26.

    Mani, S. & Ramanathan, K. M. Effect of nitrogen and potassium on the crude fibre content of bhendi fruit on successive stage of picking. South Indian Hortic. 29(2), 100–104 (1981).

    Google Scholar 

  • 27.

    Ahmad, E., Moaveni, P. & Farahani, H. A. Effects of planting dates and compost on mucilage variations in borage (Borago officinalis L.) under different chemical fertilization systems. Int. J. Biotechnol. Mol. Biol. Res. 1(5), 58–61 (2010).

    Google Scholar 

  • 28.

    Leroy, B. M. M., Bommele, L., Reheul, D., Moen, M. & de Neve, S. The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture: Effects on soil fauna and yield. Eur. J. Soil Biol. 43, 91–100 (2007).

    Google Scholar 

  • 29.

    Lumpkin, H. Organic vegetable production: A theme for international agricultural research. in Proceedings of the seminar on the production and export of organic fruit and vegetables in Asia. https://www.fao.org/DOCREP/006/AD429E/ad429e13.htm. Accessed 8 Dec 2019 (2003).

  • 30.

    Weston, L. A. & Barth, M. M. Pre-harvest factors affecting post-harvest quality of vegetables. HortScience 32(5), 812–816 (1997).

    Google Scholar 

  • 31.

    Lefsrud, M. G., Kopsell, D. A., Kopsell, D. E. & Curran-Celentano, J. Air temperature affect biomass and carotenoid pigment accumulation in kale and spinach grown in a controlled environment. HortScience 40(7), 2026–2030 (2005).

    CAS  Google Scholar 

  • 32.

    Cardoso, M. O. & Berni, R. F. Nitrogen applied in okra under non-tightness grown and residual fertilization. Hortic. Bras. 30, 645–652 (2012).

    Google Scholar 

  • 33.

    Gee, G. W. Particle-size analysis. In Methods of Soil Analysis, Part 4. Physical Methods (eds Dane, J. H. & Topp, G. C.) 255–293 (Wiley, Hoboken, 2002).

    Google Scholar 

  • 34.

    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3. Chemical Methods (ed. Sparks, D. L.) 961–1010 (Wiley, Hoboken, 1996).

    Google Scholar 

  • 35.

    Bremner, J. M. Nitrgen-total. In Methods of Soil Analysis, Part 3. Chemical Methods (ed. Sparks, D. L.) 1085–1121 (Wiley, Hoboken, 1996).

    Google Scholar 

  • 36.

    Frank, K., Beegle, D. & Denning, J. Phosphorus. In Recommended chemical soil test procedures for the North Central Region, North Central Regional Research Publication No. 221 (re-vised) (ed. Brown, J. R.) 21–26 (Missouri Agriculture Experiment Station, Columbia, 1998).

    Google Scholar 

  • 37.

    Hendershot, W. H. & Lalande, H. Ion exchange and exchangeable cations. In Soil Sampling and Methods of Analysis (ed. Carter, M. R.) (Lewis Publishers, CRC Press, Cambridge, 1993).

    Google Scholar 

  • 38.

    Omolaiye, J. A. et al. Development of leaf area prediction model of okra (Abelmoschus spp.). Product. Agric. Technol. J. 11(1), 130–136 (2015).

    Google Scholar 

  • 39.

    AOAC. Official Methods of Analysis of AOAC International (AOAC, Arlington, 2003).

    Google Scholar 

  • 40.

    Williams, P., El-Baramen, F. J., Nakkow, B. & Rihawi, S. Crop Quality Evaluation Methods and Guidelines (International Centre for Agricultural research in the Dry Area, Aleppo, 1986).

    Google Scholar 

  • 41.

    Thanatcha, R. & Pranee, A. Extraction and characterization of mucilage in Ziziphus mauritiana Lam. Int. Food Res. J. 18, 201–212 (2011).

    CAS  Google Scholar 

  • 42.

    Tel, D.A. & Hagarty, M. Soil and Plant Analysis. Study Guide for Agricultural Laboratory Directors and Technologists Working in Tropical Regions. International Institute of Tropical Agriculture, Ibadan, Nigeria, in conjunction with the University of Guelph, Canada (1984).

  • 43.

    Horwitz, W. & Latimer, G. W. (eds) Official Methods of Analysis of AOAC International (AOAC, Arlington, 2005).

    Google Scholar 

  • 44.

    Genstat. Genstat 5 Release 3.2 Reference Manual (Oxford University Press, Oxford, 1993).

    Google Scholar 


  • Source: Ecology - nature.com

    Validating the physics behind the new MIT-designed fusion experiment

    Utilizing conductivity of seawater for bioelectric measurement of fish