in

Ecology shapes epistasis in a genotype–phenotype–fitness map for stick insect colour

  • 1.

    Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).

    CAS  PubMed  Google Scholar 

  • 2.

    Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013).

    CAS  PubMed  Google Scholar 

  • 3.

    Barrett, R. D. H., Rogers, S. M. & Schluter, D. Natural selection on a major armor gene in threespine stickleback. Science 322, 255–257 (2008).

    CAS  PubMed  Google Scholar 

  • 4.

    Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).

    CAS  PubMed  Google Scholar 

  • 5.

    Gratten, J. et al. A localized negative genetic correlation constrains microevolution of coat color in wild sheep. Science 319, 318–320 (2008).

    CAS  PubMed  Google Scholar 

  • 6.

    Lamichhaney, S. et al. A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science 352, 470–474 (2016).

    CAS  PubMed  Google Scholar 

  • 7.

    Coberly, L. C. & Rausher, M. D. Pleiotropic effects of an allele producing white flowers in Ipomoea purpurea. Evolution 62, 1076–1085 (2008).

    PubMed  Google Scholar 

  • 8.

    Korves, T. M., others. Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am. Nat. 169, 141–157 (2007).

    Google Scholar 

  • 9.

    Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17 (2012).

    PubMed  Google Scholar 

  • 10.

    de Visser, J. C. F. T. & Elena, S. F. The causes of epistasis. Proc. R. Soc. B 278, 3617–3624 (2011).

    PubMed  Google Scholar 

  • 11.

    Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Storz, J. F. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17, 239–250 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global epistasis makes adaptation predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Marques, D. A. et al. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Natarajan, C. et al. Epistasis among adaptive mutations in deer mouse hemoglobin. Science 340, 1324–1327 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Dettman, J. R., Sirjusingh, C., Kohn, L. M. & Anderson, J. B. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature 447, 585–588 (2007).

    CAS  PubMed  Google Scholar 

  • 17.

    Orr, H. A. The population genetics of speciation— the evolution of hybrid incompatibilities. Genetics 139, 1805–1813 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12, 307–312 (1997).

    CAS  PubMed  Google Scholar 

  • 19.

    Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, R288–R294 (2014).

    CAS  PubMed  Google Scholar 

  • 20.

    Wilfert, L. & Schmid-Hempel, P. The genetic architecture of susceptibility to parasites. BMC Evol. Biol. 8, 187 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    CAS  PubMed  Google Scholar 

  • 22.

    Gavrilets, S. Fitness Landscapes and the Origin of Species (Princeton Univ. Press, 2004); https://doi.org/10.2307/j.ctv39x541

  • 23.

    Wright, S. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proc. Sixth Int. Congr. Genet. 1, 356–366 (1932).

    Google Scholar 

  • 24.

    Lehner, B. Molecular mechanisms of epistasis within and between genes. Trends Genet. 27, 323–331 (2011).

    CAS  PubMed  Google Scholar 

  • 25.

    Whitlock, M. C., Phillips, P. C., Moore, F. B. & Tonsor, S. J. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26, 601–629 (1995).

    Google Scholar 

  • 26.

    Whitlock, M. C. Founder effects and peak shifts without genetic drift: adaptive peak shifts occur easily when environments fluctuate slightly. Evolution 51, 1044–1048 (1997).

    PubMed  Google Scholar 

  • 27.

    Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

    CAS  PubMed  Google Scholar 

  • 28.

    Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338 (2002).

    CAS  PubMed  Google Scholar 

  • 29.

    Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).

    CAS  PubMed  Google Scholar 

  • 30.

    Plucain, J. et al. Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science 343, 1366–1369 (2014).

    CAS  PubMed  Google Scholar 

  • 31.

    Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Sandoval, C. P. Differential visual predation on morphs of Timema cristinae (Phasmatodeae:Timemidae) and its consequences for host range. Biol. J. Linn. Soc. 52, 341–356 (1994).

    Google Scholar 

  • 33.

    Sandoval, C. P. The effects of the relative geographic scales of gene flow and selection on morph frequencies in the walking‐stick Timema cristinae. Evolution 48, 1866–1879 (1994).

    PubMed  Google Scholar 

  • 34.

    Sandoval, C. P. & Nosil, P. Counteracting selective regimes and host preference evolution in ecotypes of two species of walking-sticks. Evolution 59, 2405–2413 (2005).

    CAS  PubMed  Google Scholar 

  • 35.

    Comeault, A. A. et al. Selection on a genetic polymorphism counteracts ecological speciation in a stick insect. Curr. Biol. 25, 1975–1981 (2015).

    CAS  PubMed  Google Scholar 

  • 36.

    Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science 359, 765–770 (2018).

    CAS  PubMed  Google Scholar 

  • 37.

    Villoutreix, R. et al. Large-scale mutation in the evolution of a gene complex for cryptic coloration. Science 369, 460–466 (2020).

    CAS  PubMed  Google Scholar 

  • 38.

    Lindtke, D. et al. Long-term balancing selection on chromosomal variants associated with crypsis in a stick insect. Mol. Ecol. 26, 6189–6205 (2017).

    CAS  PubMed  Google Scholar 

  • 39.

    Endler, J. A. A framework for analysing colour pattern geometry: adjacent colours. Biol. J. Linn. Soc. 107, 233–253 (2012).

    Google Scholar 

  • 40.

    Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).

    Google Scholar 

  • 41.

    Hurvich, L. M. Color Vision (Sinauer Associates, 1981).

  • 42.

    Gompert, Z. et al. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 17, 369–379 (2014).

    PubMed  Google Scholar 

  • 43.

    Zhou, X., Carbonetto, P. & Stephens, M. Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet. 9, e1003264 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Crawford, L., Zeng, P., Mukherjee, S. & Zhou, X. Detecting epistasis with the marginal epistasis test in genetic mapping studies of quantitative traits. PLoS Genet. 13, e1006869 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Comeault, A. A., Ferreira, C., Dennis, S., Soria-Carrasco, V. & Nosil, P. Color phenotypes are under similar genetic control in two distantly related species of Timema stick insect. Evolution 70, 1283–1296 (2016).

    CAS  PubMed  Google Scholar 

  • 46.

    Nosil, P. & Crespi, B. J. Experimental evidence that predation promotes divergence in adaptive radiation. Proc. Natl Acad. Sci. USA 103, 9090–9095 (2006).

    CAS  PubMed  Google Scholar 

  • 47.

    Rennison, D. J., Heilbron, K., Barrett, R. D. H. & Schluter, D. Discriminating selection on lateral plate phenotype and its underlying gene, ectodysplasin, in threespine stickleback. Am. Nat. 185, 150–156 (2015).

    PubMed  Google Scholar 

  • 48.

    Wright, S. The shifting balance theory and macroevolution. Annu. Rev. Genet. 16, 1–19 (1982).

    CAS  PubMed  Google Scholar 

  • 49.

    Coyne, J. A., Barton, N. H. & Turelli, M. Perspective: a critique of Sewall Wright’s shifting balance theory of evolution. Evolution 51, 643–671 (1997).

    PubMed  Google Scholar 

  • 50.

    Wade, M. J. & Goodnight, C. J. Perspective: the theories of Fisher and Wright in the context of metapopulations: when nature does many small experiments. Evolution 52, 1537–1553 (1998).

    PubMed  Google Scholar 

  • 51.

    Reimchen, T. E. Predator-induced cyclical changes in lateral plate frequencies of Gasterosteus. Behaviour 132, 1079–1094 (1995).

    Google Scholar 

  • 52.

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

  • 53.

    Sackman, A. M. & Rokyta, D. R. Additive phenotypes underlie epistasis of fitness effects. Genetics 208, 339–348 (2018).

    CAS  PubMed  Google Scholar 

  • 54.

    Knief, U. et al. Epistatic mutations under divergent selection govern phenotypic variation in the crow hybrid zone. Nat. Ecol. Evol. 3, 570–576 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).

    PubMed  Google Scholar 

  • 56.

    Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

  • 57.

    Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

  • 58.

    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  PubMed  Google Scholar 

  • 59.

    Parchman, T. L. et al. Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol. Ecol. 21, 2991–3005 (2012).

    CAS  PubMed  Google Scholar 

  • 60.

    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

  • 61.

    Soria-Carrasco, V. et al. Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344, 738–742 (2014).

    CAS  PubMed  Google Scholar 

  • 62.

    Guan, Y. & Stephens, M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 5, 1780–1815 (2011).

    Google Scholar 

  • 63.

    Nosil, P. Reproductive isolation caused by visual predation on migrants between divergent environments. Proc. R. Soc. B 271, 1521–1528 (2004).

    PubMed  Google Scholar 

  • 64.

    Nosil, P. et al. Genomic consequences of multiple speciation processes in a stick insect. Proc. R. Soc. B 279, 5058–5065 (2012).

    PubMed  Google Scholar 

  • 65.

    Sandoval, C. P. Persistence of a walking-stick population (Phasmatoptera: Timematodea) after a wildfire. Southwest. Nat. 45, 123–127 (2000).

    Google Scholar 

  • 66.

    Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4-8 (2018).

  • 67.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    PubMed  Google Scholar 

  • 68.

    Janzen, F. J. & Stern, H. S. Logistic regression for empirical studies of multivariate selection. Evolution 52, 1564–1571 (1998).

    PubMed  Google Scholar 

  • 69.

    Zeugner, S. & Feldkircher, M. Bayesian model averaging employing fixed and flexible priors: the BMS package for R. J. Stat. Softw. 68, 1–37 (2015).

    Google Scholar 

  • 70.

    Zellner, A. in Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti (eds Goel, P. & Zellner, A.) 233–243 (1986).

  • 71.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  • 72.

    Weinberger, E. Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336 (1990).

    Google Scholar 

  • 73.

    Vassilev, V. K., Fogarty, T. C. & Miller, J. F. Information characteristics and the structure of landscapes. Evol. Comput. 8, 31–60 (2000).

    CAS  PubMed  Google Scholar 

  • 74.

    Kouyos, R. D. et al. Exploring the complexity of the HIV-1 fitness landscape. PLoS Genet. 8, e1002551–e1002551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Malan, K. M. & Engelbrecht, A. P. A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013).

    Google Scholar 

  • 76.

    Kondrashov, D. A. & Kondrashov, F. A. Topological features of rugged fitness landscapes in sequence space. Trends Genet. 31, 24–33 (2015).

    CAS  PubMed  Google Scholar 

  • 77.

    Poursoltan, S. & Neumann, F. in Evolutionary Constrained Optimization (eds Datta, R. & Deb, K.) 29–50 (Springer, 2015); https://doi.org/10.1007/978-81-322-2184-5_2

  • 78.

    Paten, B. et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 21, 1512–1528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).

    CAS  PubMed  Google Scholar 

  • 80.

    Endler, J. A. & Mielke, P. W. Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 86, 405–431 (2005).

    Google Scholar 


  • Source: Ecology - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields