in

Ecosystem decay exacerbates biodiversity loss with habitat loss

  • 1.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  PubMed  Google Scholar 

  • 2.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed  Google Scholar 

  • 3.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).

    Google Scholar 

  • 5.

    Fletcher, R. J. Jr et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).

    Google Scholar 

  • 6.

    Fahrig, L. et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 230, 179–186 (2019).

    Google Scholar 

  • 7.

    Connor, E. F. & McCoy, E. D. The statistics and biology of the species–area relationship. Am. Nat. 113, 791–833 (1979).

    MathSciNet  Google Scholar 

  • 8.

    Yaacobi, G., Ziv, Y. & Rosenzweig, M. L. Habitat fragmentation may not matter to species diversity. Proc. R. Soc. Lond. B 274, 2409–2412 (2007).

    Google Scholar 

  • 9.

    Lovejoy, T. E. et al. in Extinctions (ed. Nitecki, M. H.) 295–325 (Univ. of Chicago Press, 1984).

  • 10.

    Hanski, I., Zurita, G. A., Bellocq, M. I. & Rybicki, J. Species-fragmented area relationship. Proc. Natl Acad. Sci. USA 110, 12715–12720 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Pimm, S. L. & Askins, R. A. Forest losses predict bird extinctions in eastern North America. Proc. Natl Acad. Sci. USA 92, 9343–9347 (1995).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    He, F. & Hubbell, S. P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Google Scholar 

  • 15.

    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Halley, J. M., Sgardeli, V. & Monokrousos, N. Species–area relationships and extinction forecasts. Ann. NY Acad. Sci. 1286, 50–61 (2013).

    ADS  PubMed  Google Scholar 

  • 19.

    Bueno, A. S. & Peres, C. A. Patch-scale biodiversity retention in fragmented landscapes: reconciling the habitat amount hypothesis with the island biogeography theory. J. Biogeogr. 46, 621–632 (2019).

    Google Scholar 

  • 20.

    Chase, J. M. et al. A framework for disentangling ecological mechanisms underlying the island species–area relationship. Front. Biogeogr. 11, e40844 (2019).

    Google Scholar 

  • 21.

    Chase, J. M. et al. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).

    PubMed  Google Scholar 

  • 22.

    Chase, J. M. et al. FragSAD: a database of diversity and species abundance distributions from habitat fragments. Ecology 100, e02861 (2019).

    PubMed  Google Scholar 

  • 23.

    Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142 (2006).

    PubMed  Google Scholar 

  • 24.

    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    ADS  Google Scholar 

  • 25.

    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).

    PubMed  Google Scholar 

  • 26.

    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Chisholm, R. A. et al. Species–area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 21, 804–813 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Matthews, T. J., Cottee-Jones, H. E. & Whittaker, R. J. Habitat fragmentation and the species–area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers. Distrib. 20, 1136–1146 (2014).

    Google Scholar 

  • 29.

    Koh, L. P., Lee, T. M., Sodhi, N. S. & Ghazoul, J. An overhaul of the species–area approach for predicting biodiversity loss: incorporating matrix and edge effects. J. Appl. Ecol. 47, 1063–1070 (2010).

    Google Scholar 

  • 30.

    Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 12283 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: a review. Conserv. Biol. 5, 18–32 (1991).

    Google Scholar 

  • 32.

    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).

    Google Scholar 

  • 33.

    Debinski, D. M. & Holt, R. D. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14, 342–355 (2000).

    Google Scholar 

  • 34.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).

    Google Scholar 

  • 35.

    Jones, I. L., Bunnefeld, N., Jump, A. S., Peres, C. A. & Dent, D. H. Extinction debt on reservoir land-bridge islands. Biol. Conserv. 199, 75–83 (2016).

    Google Scholar 

  • 36.

    Aguiar, W. M. D. & Gaglianone, M. C. Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae). Rev. Bras. Entomol. 56, 210–219 (2012).

    Google Scholar 

  • 37.

    Aizen, M. A. & Feinsinger, P. Habitat fragmentation, native insect pollinators, and feral honey bees in Argentine “Chaco Serrano”. Ecol. Appl. 4, 378–392 (1994).

    Google Scholar 

  • 38.

    Almeida-Gomes, M. & Rocha, C. F. D. Diversity and distribution of lizards in fragmented Atlantic Forest landscape in southeastern Brazil. J. Herpetol. 48, 423–429 (2014).

    Google Scholar 

  • 39.

    Andresen, E. Effect of forest fragmentation on dung beetle communities and functional consequences for plant regeneration. Ecography 26, 87–97 (2003).

    Google Scholar 

  • 40.

    Báldi, A. & Kisbenedek, T. Orthopterans in small steppe patches: an investigation for the best-fit model of the species–area curve and evidences for their non-random distribution in the patches. Acta Oecol. 20, 125–132 (1999).

    ADS  Google Scholar 

  • 41.

    Baz, A. & Garcia-Boyero, A. The SLOSS dilemma: a butterfly case study. Biodivers. Conserv. 5, 493–502 (1996).

    Google Scholar 

  • 42.

    Bell, K. E. & Donnelly, M. A. Influence of forest fragmentation on community structure of frogs and lizards in northeastern Costa Rica. Conserv. Biol. 20, 1750–1760 (2006).

    PubMed  Google Scholar 

  • 43.

    Benedick, S. et al. Impacts of rain forest fragmentation on butterflies in northern Borneo: species richness, turnover and the value of small fragments. J. Appl. Ecol. 43, 967–977 (2006).

    Google Scholar 

  • 44.

    Benítez-Malvido, J. et al. The multiple impacts of tropical forest fragmentation on arthropod biodiversity and on their patterns of interactions with host plants. PLoS ONE 11, e0146461 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Berg, Å. Diversity and abundance of birds in relation to forest fragmentation, habitat quality and heterogeneity. Bird Study 44, 355–366 (1997).

    Google Scholar 

  • 46.

    Bernard, E. & Fenton, M. B. Bats in a fragmented landscape: species composition, diversity and habitat interactions in savannas of Santarém, Central Amazonia, Brazil. Biol. Conserv. 134, 332–343 (2007).

    Google Scholar 

  • 47.

    Bolger, D. T. et al. Response of rodents to habitat fragmentation in coastal southern California. Ecol. Appl. 7, 552–563 (1997).

    Google Scholar 

  • 48.

    Bossart, J. L. et al. Richness, abundance, and complementarity of fruit-feeding butterfly species in relict sacred forests and forest reserves of Ghana. Biodivers. Conserv. 15, 333–359 (2006).

    Google Scholar 

  • 49.

    Bossart, J. L. & Antwi, J. B. Limited erosion of genetic and species diversity from small forest patches: sacred forest groves in an Afrotropical biodiversity hotspot have high conservation value for butterflies. Biol. Conserv. 198, 122–134 (2016).

    Google Scholar 

  • 50.

    Bragagnolo, C. et al. Harvestmen in an Atlantic forest fragmented landscape: evaluating assemblage response to habitat quality and quantity. Biol. Conserv. 139, 389–400 (2007).

    Google Scholar 

  • 51.

    Brosi, B. J., Daily, G. C., Shih, T. M., Oviedo, F. & Durán, G. The effects of forest fragmentation on bee communities in tropical countryside. J. Appl. Ecol. 45, 773–783 (2008).

    Google Scholar 

  • 52.

    Brosi, B. J. The effects of forest fragmentation on euglossine bee communities (Hymenoptera: Apidae: Euglossini). Biol. Conserv. 142, 414–423 (2009).

    Google Scholar 

  • 53.

    Cabrera-Guzmán, E. & Reynoso, V. H. Amphibian and reptile communities of rainforest fragments: minimum patch size to support high richness and abundance. Biodivers. Conserv. 21, 3243–3265 (2012).

    Google Scholar 

  • 54.

    Cadotte, M. W., Franck, R., Reza, L. & Lovett-Doust, J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 11, 1417–1436 (2002).

    Google Scholar 

  • 55.

    Carneiro, M. S., Campos, C. C., Ramos, F. N. & Dos Santos, F. A. Spatial species turnover maintains high diversities in a tree assemblage of a fragmented tropical landscape. Ecography 7, e01500 (2016).

    Google Scholar 

  • 56.

    Cayuela, L., Golicher, D. J., Benayas, J. M. R., González-Espinosa, M. & Ramírez-Marcial, N. Fragmentation, disturbance and tree diversity conservation in tropical montane forests. J. Appl. Ecol. 43, 1172–1181 (2006).

    Google Scholar 

  • 57.

    Chiarello, A. G. Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biol. Conserv. 89, 71–82 (1999).

    Google Scholar 

  • 58.

    Cosson, J. F. et al. Ecological changes in recent land-bridge islands in French Guiana, with emphasis on vertebrate communities. Biol. Conserv. 91, 213–222 (1999).

    Google Scholar 

  • 59.

    Dami, F. D., Mwansat, G. S. & Manu, S. A. The effects of forest fragmentation on species richness on the Obudu Plateau, south-eastern Nigeria. Afr. J. Ecol. 51, 32–36 (2013).

    Google Scholar 

  • 60.

    Dauber, J., Bengtsson, J. & Lenoir, L. Evaluating effects of habitat loss and land-use continuity on ant species richness in seminatural grassland remnants. Conserv. Biol. 20, 1150–1160 (2006).

    PubMed  Google Scholar 

  • 61.

    Davies, R. G. et al. Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J. Trop. Ecol. 19, 509–524 (2003).

    Google Scholar 

  • 62.

    de La Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical interior Atlantic forest in eastern Paraguay. Mammalia 78, 437–449 (2014).

    Google Scholar 

  • 63.

    de Souza, O. F. F. & Brown, V. K. Effects of habitat fragmentation on Amazonian termite communities. J. Trop. Ecol. 10, 197 (1994).

    Google Scholar 

  • 64.

    Dickman, C. R. Habitat fragmentation and vertebrate species richness in an urban environment. J. Appl. Ecol. 24, 337–351 (1987).

    Google Scholar 

  • 65.

    Didham, R. K., Hammond, P. M., Lawton, J. H., Eggleton, P. & Stork, N. E. Beetle species responses to tropical forest fragmentation. Ecol. Monogr. 68, 295–323 (1998).

    Google Scholar 

  • 66.

    Ding, Z., Feeley, K. J., Wang, Y., Pakeman, R. J. & Ding, P. Patterns of bird functional diversity on land-bridge island fragments. J. Anim. Ecol. 82, 781–790 (2013).

    PubMed  Google Scholar 

  • 67.

    Dixo, M. & Metzger, J. P. Are corridors, fragment size and forest structure important for the conservation of leaf-litter lizards in a fragmented landscape? Oryx 43, 435 (2009).

    Google Scholar 

  • 68.

    Dominguez-Haydar, Y. & Armbrecht, I. Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejón coal mine in Colombia. Restor. Ecol. 19, 178–184 (2011).

    Google Scholar 

  • 69.

    Echeverría, C. et al. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Glob. Ecol. Biogeogr. 16, 426–439 (2007).

    Google Scholar 

  • 70.

    Edwards, D. P. et al. Wildlife-friendly oil palm plantations fail to protect biodiversity effectively. Conserv. Lett. 3, 236–242 (2010).

    Google Scholar 

  • 71.

    Estrada, A. & Coates-Estrada, R. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biol. Conserv. 103, 237–245 (2002).

    Google Scholar 

  • 72.

    Estrada, A. & Coates-Estrada, R. Dung beetles in continuous forest, forest fragments and in an agricultural mosaic habitat island at Los Tuxtlas, Mexico. Biodivers. Conserv. 11, 1903–1918 (2002).

    Google Scholar 

  • 73.

    Filgueiras, B. K. C., Iannuzzi, L. & Leal, I. R. Habitat fragmentation alters the structure of dung beetle communities in the Atlantic forest. Biol. Conserv. 144, 362–369 (2011).

    Google Scholar 

  • 74.

    da Fonseca, G. A. B. & Robinson, J. G. Forest size and structure: competitive and predatory effects on small mammal communities. Biol. Conserv. 53, 265–294 (1990).

    Google Scholar 

  • 75.

    Fujita, A. et al. Effects of forest fragmentation on species richness and composition of ground beetles (Coleoptera: Carabidae and Brachinidae) in urban landscapes. Entomol. Sci. 11, 39–48 (2008).

    Google Scholar 

  • 76.

    Gavish, Y., Ziv, Y. & Rosenzweig, M. L. Decoupling fragmentation from habitat loss for spiders in patchy agricultural landscapes. Conserv. Biol. 26, 150–159 (2012).

    PubMed  Google Scholar 

  • 77.

    Giladi, I. et al. Scale-dependent determinants of plant species richness in a semi-arid fragmented agro-ecosystem. J. Veg. Sci. 22, 983–996 (2011).

    Google Scholar 

  • 78.

    Giraudo, A. R. et al. Comparing bird assemblages in large and small fragments of the Atlantic forest hotspots. Biodivers. Conserv. 17, 1251–1265 (2008).

    Google Scholar 

  • 79.

    Gonçalves-Souza, T., Matallana, G. & Brescovit, A. D. Effects of habitat fragmentation on the spider community (Arachnida, Araneae) in three Atlantic forest remnants in southeastern Brazil. Rev. Iber. Aracnol. 16, 35–42 (2008).

    Google Scholar 

  • 80.

    Goodman, S. M. & Rakotondravony, D. The effects of forest fragmentation and isolation on insectivorous small mammals (Lipotyphla) on the Central High Plateau of Madagascar. J. Zool. 250, 193–200 (2000).

    Google Scholar 

  • 81.

    Guadagnin, D. L., Peter, Â. S., Perello, L. F. C. & Maltchik, L. Spatial and temporal patterns of waterbird assemblages in fragmented wetlands of southern Brazil. Waterbirds 28, 261–272 (2005).

    Google Scholar 

  • 82.

    Halme, E., Niemela, J. & Haime, E. Carabid beetles in fragments of coniferous forest. Ann. Zool. Fenn. 30, 17–30 (1993).

    Google Scholar 

  • 83.

    Henry, M., Pons, J.-M. & Cosson, J.-F. Foraging behaviour of a frugivorous bat helps bridge landscape connectivity and ecological processes in a fragmented rainforest. J. Anim. Ecol. 76, 801–813 (2007).

    PubMed  Google Scholar 

  • 84.

    Horváth, R. et al. Spiders are not less diverse in small and isolated grasslands, but less diverse in overgrazed grasslands: a field study (East Hungary, Nyirseg). Agric. Ecosyst. Environ. 130, 16–22 (2009).

    Google Scholar 

  • 85.

    Jauker, F., Jauker, B., Grass, I., Steffan-Dewenter, I. & Wolters, V. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100, e02569 (2019).

    PubMed  Google Scholar 

  • 86.

    Jung, J. K. et al. A comparison of diversity and species composition of ground beetles (Coleoptera: Carabidae) between conifer plantations and regenerating forests in Korea. Ecol. Res. 29, 877–887 (2014).

    Google Scholar 

  • 87.

    Jyothi, K. M. & Nameer, P. O. Birds of sacred groves of northern Kerala, India. J. Threat. Taxa 7, 8226–8236 (2015).

    Google Scholar 

  • 88.

    Kapoor, V. Effects of rainforest fragmentation and shade-coffee plantations on spider communities in the Western Ghats, India. J. Insect Conserv. 12, 53–68 (2008).

    Google Scholar 

  • 89.

    Kappes, H. et al. Response of snails and slugs to fragmentation of lowland forests in NW Germany. Landsc. Ecol. 24, 685–697 (2009).

    Google Scholar 

  • 90.

    Klein, B. C. Effects of forest fragmentation on dung and carrion beetle communities in central Amazonia. Ecology 70, 1715–1725 (1989).

    Google Scholar 

  • 91.

    Knapp, M. & Řezáč, M. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape. PLoS ONE 10, e0123052 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 92.

    Lambert, T. D. et al. Rodents on tropical land-bridge islands. J. Zool. 260, 179–187 (2003).

    Google Scholar 

  • 93.

    Lasky, J. R. & Keitt, T. H. Abundance of Panamanian dry-forest birds along gradients of forest cover at multiple scales. J. Trop. Ecol. 26, 67–78 (2010).

    Google Scholar 

  • 94.

    de Lima, M. G. & Gascon, C. The conservation of linear forest remnants in central Amazonia. Biol. Conserv. 91, 241–247 (1999).

    Google Scholar 

  • 95.

    Lima, J. et al. Amphibians on Amazonian land-bridge islands are affected more by area than isolation. Biotropica 47, 369–376 (2015).

    Google Scholar 

  • 96.

    Lion, M. B., Garda, A. A. & Fonseca, C. R. Split distance: a key landscape metric shaping amphibian populations and communities in forest fragments. Divers. Distrib. 20, 1245–1257 (2014).

    Google Scholar 

  • 97.

    Lion, M. B., Garda, A. A., Santana, D. J. & Fonseca, C. R. The conservation value of small fragments for Atlantic forest reptiles. Biotropica 48, 265–275 (2016).

    Google Scholar 

  • 98.

    Lövei, G. L. & Cartellieri, M. Ground beetles (Coleoptera, Carabidae) in forest fragments of the Manuwatu, New Zealand: collapsed assemblages? J. Insect Conserv. 4, 239–244 (2000).

    Google Scholar 

  • 99.

    Mac Nally, R. & Brown, G. W. Reptiles and habitat fragmentation in the box-ironbark forests of central Victoria, Australia: predictions, compositional change and faunal nestedness. Oecologia 128, 116–125 (2001).

    ADS  Google Scholar 

  • 100.

    Manu, S., Peach, W. & Cresswell, W. The effects of edge, fragment size and degree of isolation on avian species richness in highly fragmented forest in West Africa. Ibis 149, 287–297 (2007).

    Google Scholar 

  • 101.

    Martensen, A. C., Ribeiro, M. C., Banks-Leite, C., Prado, P. I. & Metzger, J. P. Associations of forest cover, fragment area, and connectivity with Neotropical understory bird species richness and abundance. Conserv. Biol. 26, 1100–1111 (2012).

    PubMed  Google Scholar 

  • 102.

    McCollin, D. Avian distribution patterns in a fragmented wooded landscape (North Humberside, U.K.): the role of between-patch and within-patch structure. Glob. Ecol. Biogeogr. Lett. 3, 48–62 (1993).

    Google Scholar 

  • 103.

    McIntyre, N. E. Effects of forest patch size on avian diversity. Landsc. Ecol. 10, 85–99 (1995).

    Google Scholar 

  • 104.

    Meyer, C. F. J. & Kalko, E. K. V. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J. Biogeogr. 35, 1711–1726 (2008).

    Google Scholar 

  • 105.

    Nemésio, A. & Silveira, F. A. Orchid bee fauna (Hymenoptera: Apidae: Euglossina) of Atlantic Forest fragments inside an urban area in southeastern Brazil. Neotrop. Entomol. 36, 186–191 (2007).

    PubMed  Google Scholar 

  • 106.

    Nemésio, A. & Silveira, F. A. Forest fragments with larger core areas better sustain diverse orchid bee faunas (Hymenoptera: Apidae: Euglossina). Neotrop. Entomol. 39, 555–561 (2010).

    PubMed  Google Scholar 

  • 107.

    Neuschulz, E. L., Botzat, A. & Farwig, N. Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. Oikos 120, 1371–1379 (2011).

    Google Scholar 

  • 108.

    Nogueira, A. & Pinto-da-Rocha, R. The effects of habitat size and quality on the orb-weaving spider guild (Arachnida: Araneae) in an Atlantic forest fragmented landscape. J. Arachnol. 44, 36–45 (2016).

    Google Scholar 

  • 109.

    Nufio, R. C., McClenahan, L. J. & Thurston, G. E. Determining the effects of habitat fragment area on grasshopper species density and richness: a comparison of proportional and uniform sampling methods. Insect Conserv. Divers. 2, 295–304 (2009).

    Google Scholar 

  • 110.

    Nyeko, P. Dung beetle assemblages and seasonality in primary forest and forest fragments on agricultural landscapes in Budongo, Uganda. Biotropica 41, 476–484 (2009).

    Google Scholar 

  • 111.

    Nyelele, C. et al. Woodland fragmentation explains tree species diversity in an agricultural landscape of Southern Africa. Trop. Ecol. 55, 365–374 (2014).

    Google Scholar 

  • 112.

    Owen, C. L. Mapping Biodiversity in a Modified Landscape. MSc thesis, Imperial College London (2008).

  • 113.

    Paciencia, M. L. B. & Prado, J. Effects of forest fragmentation on pteridophyte diversity in a tropical rain forest in Brazil. Plant Ecol. 180, 87–104 (2005).

    Google Scholar 

  • 114.

    Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic forest landscape. Biodivers. Conserv. 13, 2567–2586 (2004).

    Google Scholar 

  • 115.

    Pineda, E. & Halffter, G. Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biol. Conserv. 117, 499–508 (2004).

    Google Scholar 

  • 116.

    Raheem, D. C. et al. Fragmentation and pre-existing species turnover determine land-snail assemblages of tropical rain forest. J. Biogeogr. 36, 1923–1938 (2009).

    Google Scholar 

  • 117.

    Rocha, R. et al. Consequences of a large-scale fragmentation experiment for Neotropical bats: disentangling the relative importance of local and landscape-scale effects. Landsc. Ecol. 32, 31–45 (2017).

    Google Scholar 

  • 118.

    Sam, K., Koane, B., Jeppy, S. & Novotny, V. Effect of forest fragmentation on bird species richness in Papua New Guinea. J. Field Ornithol. 85, 152–167 (2014).

    Google Scholar 

  • 119.

    Savilaakso, S., Koivisto, J., Veteli, T. O. & Roininen, H. Microclimate and tree community linked to differences in lepidopteran larval communities between forest fragments and continuous forest. Divers. Distrib. 15, 356–365 (2009).

    Google Scholar 

  • 120.

    Schnitzler, F. R. Hymenopteran Parasitoid Diversity and Tri-Trophic Interactions: The Effects of Habitat Fragmentation in Wellington, New Zealand. PhD thesis, Victoria Univ. of Wellington (2008).

  • 121.

    Senior, M. J. M. Assessing Biodiversity and Ecosystem Functioning in Fragmented Tropical Landscapes. PhD Thesis, Univ. of York (2014).

  • 122.

    Silva, M. P. P. & Porto, K. C. Effect of fragmentation on the community structure of epixylic bryophytes in Atlantic forest remnants in the northeast of Brazil. Biodivers. Conserv. 18, 317–337 (2009).

    Google Scholar 

  • 123.

    Silva, R. J., Storck-Tonon, D. & Vaz-de-Mello, F. Z. Dung beetle (Coleoptera: Scarabaeinae) persistence in Amazonian forest fragments and adjacent pastures: biogeographic implications for alpha and beta diversity. J. Insect Conserv. 20, 549–564 (2016).

    Google Scholar 

  • 124.

    Silveira, G. C. et al. The orchid bee fauna in the Brazilian savanna: do forest formations contribute to higher species diversity? Apidologie 46, 197–208 (2015).

    CAS  Google Scholar 

  • 125.

    Slade, E. M. et al. Life-history traits and landscape characteristics predict macro-moth responses to forest fragmentation. Ecology 94, 1519–1530 (2013).

    PubMed  Google Scholar 

  • 126.

    Sridhar, H., Raman, T. S. & Mudappa, D. Mammal persistence and abundance in tropical rainforest remnants in the southern Western Ghats, India. Curr. Sci. 94, 748–757 (2008).

    Google Scholar 

  • 127.

    Stireman, J. O. III, Devlin, H. & Doyle, A. L. Habitat fragmentation, tree diversity, and plant invasion interact to structure forest caterpillar communities. Oecologia 176, 207–224 (2014).

    ADS  PubMed  Google Scholar 

  • 128.

    Storck-Tonon, D. & Peres, C. A. Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago. Biol. Conserv. 214, 270–277 (2017).

    Google Scholar 

  • 129.

    Struebig, M. J. et al. Conservation importance of limestone karst outcrops for Palaeotropical bats in a fragmented landscape. Biol. Conserv. 142, 2089–2096 (2009).

    Google Scholar 

  • 130.

    Tellería, J. L. & Santos, T. Effects of forest fragmentation on a guild of wintering passerines: the role of habitat selection. Biol. Conserv. 71, 61–67 (1995).

    Google Scholar 

  • 131.

    Tonhasca, A., Blackmer, J. L. & Albuquerque, G. S. Abundance and diversity of euglossine bees in the fragmented landscape of the Brazilian Atlantic forest. Biotropica 34, 416–422 (2002).

    Google Scholar 

  • 132.

    Uehara-Prado, M., Brown, K. S. & Freitas, A. V. L. Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic forest: comparison between a fragmented and a continuous landscape. Glob. Ecol. Biogeogr. 16, 43–54 (2007).

    Google Scholar 

  • 133.

    Ulrich, W., Lens, L., Tobias, J. A. & Habel, J. C. Contrasting patterns of species richness and functional diversity in bird communities of east African cloud forest fragments. PLoS ONE 11, e0163338 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 134.

    Usher, M. B. & Keiller, S. W. J. The Macrolepidoptera of farm woodlands: determinants of diversity and community structure. Biodivers. Conserv. 7, 725–748 (1998).

    Google Scholar 

  • 135.

    Vallan, D. Influence of forest fragmentation on amphibian diversity in the nature reserve of Ambohitantely, highland Madagascar. Biol. Conserv. 96, 31–43 (2000).

    Google Scholar 

  • 136.

    Vasconcelos, H. L., Vilhena, J. M., Magnusson, W. E. & Albernaz, A. L. M. Long-term effects of forest fragmentation on Amazonian ant communities. J. Biogeogr. 33, 1348–1356 (2006).

    Google Scholar 

  • 137.

    Vieira, M. V. et al. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic forest remnants. Biol. Conserv. 142, 1191–1200 (2009).

    Google Scholar 

  • 138.

    Vulinec, K. et al. Dung beetles and long-term habitat fragmentation in Alter do Chão, Amazônia, Brazil. Trop. Conserv. Sci. 1, 111–121 (2008).

    Google Scholar 

  • 139.

    Wang, Y., Wang, X. & Ding, P. Nestedness of snake assemblages on islands of an inundated lake. Curr. Zool. 58, 828–836 (2012).

    Google Scholar 

  • 140.

    Williams, M. R. Habitat resources, remnant vegetation condition and area determine distribution patterns and abundance of butterflies and day-flying moths in a fragmented urban landscape, south-west Western Australia. J. Insect Conserv. 15, 37–54 (2011).

    Google Scholar 

  • 141.

    Zartman, C. E. Habitat fragmentation impacts on epiphyllous bryophyte communities in Central Amazonia. Ecology 84, 948–954 (2003).

    Google Scholar 

  • 142.

    Ziter, C., Bennett, E. M. & Gonzalez, A. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4, 85 (2013).

    Google Scholar 

  • 143.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    PubMed  Google Scholar 

  • 144.

    Cáceres, N. C., Nápoli, R. P., Casella, J. & Hannibal, W. Mammals in a fragmented savannah landscape in south-western Brazil. J. Nat. Hist. 44, 491–512 (2010).

    Google Scholar 

  • 145.

    Ewers, R. M., Thorpe, S. & Didham, R. K. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106 (2007).

    PubMed  Google Scholar 

  • 146.

    Fernández, I. C. & Simonetti, J. A. Small mammal assemblages in fragmented shrublands of urban areas of Central Chile. Urban Ecosyst. 16, 377–387 (2013).

    Google Scholar 

  • 147.

    Garmendia, A., Arroyo-Rodríguez, V., Estrada, A., Naranjo, E. J. & Stoner, K. E. Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J. Trop. Ecol. 29, 331–344 (2013).

    Google Scholar 

  • 148.

    Stouffer, P. C., Johnson, E. I., Bierregaard, R. O. Jr & Lovejoy, T. E. Understory bird communities in Amazonian rainforest fragments: species turnover through 25 years post-isolation in recovering landscapes. PLoS ONE 6, e20543 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 149.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Google Scholar 

  • 150.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Google Scholar 

  • 151.

    Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).

    PubMed  Google Scholar 

  • 152.

    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Google Scholar 

  • 153.

    Olszewski, T. D. A unified mathematical framework for the measurement of richness and evenness within and among multiple communities. Oikos 104, 377–387 (2004).

    Google Scholar 

  • 154.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    PubMed  Google Scholar 

  • 155.

    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    MathSciNet  Google Scholar 

  • 156.

    McGlinn, D. J. et al. Measurement of Biodiversity (MoB): a method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evol. 10, 258–269 (2019).

    Google Scholar 

  • 157.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  • 158.

    Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).

    PubMed  Google Scholar 

  • 159.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).

    Google Scholar 

  • 160.

    Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).

    Google Scholar 

  • 161.

    Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package version 0.3-4 https://CRAN.R-project.org/package=adespatial (2019).

  • 162.

    May, F., Gerstner, K., McGlinn, D. J., Xiao, X. & Chase, J. M. mobsim: an R package for the simulation and measurement of biodiversity across spatial scales. Methods Ecol. Evol. 9, 1401–1408 (2018).

    Google Scholar 

  • 163.

    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 164.

    Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: the PREDICTS project. Adv. Ecol. Res. 58, 201–241 (2018).

    Google Scholar 

  • 165.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Google Scholar 

  • 166.

    Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Colonization history affects heating rates of invasive cane toads

    $25 million gift launches ambitious new effort tackling poverty and climate change