in

Extreme environmental conditions reduce coral reef fish biodiversity and productivity

[adace-ad id="91168"]
  • 1.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. evolution 27, 19–26 (2012).

    Google Scholar 

  • 4.

    Vellend, M. The Theory of Ecological Communities (MPB-57) Vol. 75 (Princeton University Press, 2016).

  • 5.

    Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).

    Google Scholar 

  • 6.

    Leibold, M. A. et al. The metacommunity concept: a framework for multi‐scale community ecology. Ecol. Lett. 7, 601–613 (2004).

    Google Scholar 

  • 7.

    Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976 (2018).

    PubMed  Google Scholar 

  • 9.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed  Google Scholar 

  • 10.

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    PubMed  Google Scholar 

  • 11.

    García, F. C., Bestion, E., Warfield, R. & Yvon-Durocher, G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 115, 10989–10994 (2018).

    PubMed  Google Scholar 

  • 12.

    Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    PubMed  Google Scholar 

  • 13.

    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Bozinovic, F. & Pörtner, H. Physiological ecology meets climate change. Ecol. Evol. 5, 1025–1030 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Barneche, D. R., Jahn, M. & Seebacher, F. Warming increases the cost of growth in a model vertebrate. Funct. Ecol. 33, 1256–1266 (2019).

    Google Scholar 

  • 16.

    Brown, J. H., Hall, C. A. & Sibly, R. M. Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat. Ecol. Evol. 2, 262 (2018).

    PubMed  Google Scholar 

  • 17.

    Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979 (2013).

    ADS  CAS  Google Scholar 

  • 18.

    Barneche, D. R. & Allen, A. P. The energetics of fish growth and how it constrains food‐web trophic structure. Ecol. Lett. 21, 836–844 (2018).

    PubMed  Google Scholar 

  • 19.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Google Scholar 

  • 20.

    Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).

    Google Scholar 

  • 22.

    Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).

    Google Scholar 

  • 23.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).

    Google Scholar 

  • 25.

    Brandl, S. J., Emslie, M. J. & Ceccarelli, D. M. Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere 7, e01557 (2016).

    Google Scholar 

  • 26.

    Fontoura, L. et al. Climate‐driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).

    ADS  Google Scholar 

  • 27.

    Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).

    ADS  Google Scholar 

  • 28.

    Robinson, J. P. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183 (2019).

    PubMed  Google Scholar 

  • 29.

    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 456 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).

    ADS  Google Scholar 

  • 31.

    Morais, R. A. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).

    Google Scholar 

  • 32.

    Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).

    ADS  PubMed  Google Scholar 

  • 33.

    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718 (2017).

    ADS  Google Scholar 

  • 34.

    Munday, P. L., McCormick, M. I. & Nilsson, G. E. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J. Exp. Biol. 215, 3865–3873 (2012).

    CAS  PubMed  Google Scholar 

  • 35.

    Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish. Fish. 9, 261–285 (2008).

    Google Scholar 

  • 36.

    Donelson, J., Munday, P., McCormick, M. & Pitcher, C. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30 (2012).

    ADS  Google Scholar 

  • 37.

    Ern, R., Huong, D., Cong, N., Bayley, M. & Wang, T. Effect of salinity on oxygen consumption in fishes: a review. J. Fish. Biol. 84, 1210–1220 (2014).

    CAS  PubMed  Google Scholar 

  • 38.

    Johansen, J. & Jones, G. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Glob. Change Biol. 17, 2971–2979 (2011).

    ADS  Google Scholar 

  • 39.

    Rummer, J. L. et al. Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Change Biol. 20, 1055–1066 (2014).

    ADS  Google Scholar 

  • 40.

    Nilsson, G. E., Crawley, N., Lunde, I. G. & Munday, P. L. Elevated temperature reduces the respiratory scope of coral reef fishes. Glob. Change Biol. 15, 1405–1412 (2009).

    ADS  Google Scholar 

  • 41.

    Eme, J. & Bennett, W. A. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. J. Therm. Biol. 34, 220–225 (2009).

    Google Scholar 

  • 42.

    Gardiner, N. M., Munday, P. L. & Nilsson, G. E. Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures. PLoS ONE 5, e13299 (2010).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Bernal, M. A. et al. Species-specific molecular responses of wild coral reef fishes during a marine heatwave. Sci. Adv. 6, eaay3423 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Mora, C. & Ospina, A. Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island (tropical eastern Pacific). Mar. Biol. 139, 765–769 (2001).

    Google Scholar 

  • 45.

    Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish. Fish. 15, 593–615 (2014).

    Google Scholar 

  • 46.

    Bernal, M. A. et al. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Mol. Ecol. 27, 4516–4528 (2018).

    CAS  PubMed  Google Scholar 

  • 47.

    Grenchik, M., Donelson, J. & Munday, P. Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis. Coral Reefs 32, 85–90 (2013).

    ADS  Google Scholar 

  • 48.

    Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros‐Montemayor, A. M. & Cheung, W. W. Adaptation strategies to climate change in marine systems. Glob. Change Biol. 24, e1–e14 (2018).

    Google Scholar 

  • 49.

    Brandl, S. J., Goatley, C. H., Bellwood, D. R. & Tornabene, L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93, 1846–1873 (2018).

    PubMed  Google Scholar 

  • 50.

    Brandl, S. J., Casey, J. M., Knowlton, N. & Duffy, J. E. Marine dock pilings foster diverse, native cryptobenthic fish assemblages across bioregions. Ecol. Evol. 7, 7069–7079 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Ahmadia, G. N., Tornabene, L., Smith, D. J. & Pezold, F. L. The relative importance of regional, local, and evolutionary factors structuring cryptobenthic coral-reef assemblages. Coral Reefs 37, 279–293 (2018).

    ADS  Google Scholar 

  • 52.

    Coker, D. J., DiBattista, J. D., Sinclair-Taylor, T. H. & Berumen, M. L. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea. Coral Reefs https://doi.org/10.1007/s00338-017-1647-9 (2017).

  • 53.

    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Miller, P. J. Miniature Vertebrates. The Implications of Small Body Size Vol. 69 (Oxford University Press, 1996).

  • 55.

    Depczynski, M. & Bellwood, D. Microhabitat utilisation patterns in cryptobenthic coral reef fish communities. Mar. Biol. 145, 455–463 (2004).

    Google Scholar 

  • 56.

    Bellwood, D. R. et al. Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170, 567–573 (2012).

    ADS  PubMed  Google Scholar 

  • 57.

    Depczynski, M. & Bellwood, D. R. Shortest recorded vertebrate lifespan found in a coral reef fish. Curr. Biol. 15, R288–R289 (2005).

    CAS  PubMed  Google Scholar 

  • 58.

    Tornabene, L., Valdez, S., Erdmann, M. & Pezold, F. Support for a ‘Center of Origin’in the Coral Triangle: cryptic diversity, recent speciation, and local endemism in a diverse lineage of reef fishes (Gobiidae: Eviota). Mol. Phylogenet. Evol. 82, 200–210 (2015).

    PubMed  Google Scholar 

  • 59.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua 11µm Day/Night Sea Surface Temperature Data. https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/sst (2018).

  • 60.

    Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).

    CAS  PubMed  Google Scholar 

  • 61.

    Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef‐building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).

    ADS  Google Scholar 

  • 62.

    Riegl, B. M. & Purkis, S. J. (Eds.) in Coral Reefs of the Gulf 1–4, (Springer, 2012).

  • 63.

    Purkis, S. J. & Riegl, B. M. in Coral Reefs of the Gulf: Adaptation to Climatic Extremes (eds Riegl, B. M. & Purkis, S. J.) 33–50 (Springer Netherlands, 2012).

  • 64.

    Price, A., Sheppard, C. & Roberts, C. The Gulf: its biological setting. Mar. Pollut. Bull. 27, 9–15 (1993).

    Google Scholar 

  • 65.

    Eagderi, S., Fricke, R., Esmaeili, H. & Jalili, P. Annotated checklist of the fishes of the Persian Gulf: Diversity and conservation status. Iran. J. Ichthyol. 6, 1–171 (2019).

    Google Scholar 

  • 66.

    Casey, J. M. et al. Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10, 1157–1170 (2019).

    Google Scholar 

  • 67.

    Depczynski, M. & Bellwood, D. R. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar. Ecol. Prog. Ser. 256, 183–191 (2003).

    ADS  Google Scholar 

  • 68.

    Pratchett, M. S., Wilson, S. K. & Munday, P. L. in Ecology of Fishes on Coral Reefs (ed. Mora, C.) 127 (Cambridge University Press, 2015).

  • 69.

    Krupp, F. & Müller, T. The status of fish populations in the northern Arabian Gulf two years after the 1991 Gulf War oil spill. Cour. Forschungsinst. Senckenb. 166, 67–75 (1994).

    Google Scholar 

  • 70.

    Bishop, J. History and current checklist of Kuwait’s ichthyofauna. J. Arid Environ. 54, 237–256 (2003).

    ADS  Google Scholar 

  • 71.

    Feary, D. A., Burt, J. A., Cavalcante, G. H. & Bauman, A. G. in Coral Reefs of the Gulf: Adaptation to Climatic Extremes (eds Riegl, B. M. & Purkis, S. J.) 163–170 (Springer Netherlands, 2012).

  • 72.

    Donelson, J. M., Munday, P. L., MCCORMICK, M. I. & Nilsson, G. E. Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob. Change Biol. 17, 1712–1719 (2011).

    ADS  Google Scholar 

  • 73.

    Ohlberger, J. Climate warming and ectotherm body size—from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).

    Google Scholar 

  • 74.

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).

    PubMed  Google Scholar 

  • 75.

    Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).

    Google Scholar 

  • 76.

    Sullam, K. E. et al. Changes in digestive traits and body nutritional composition accommodate a trophic niche shift in Trinidadian guppies. Oecologia 177, 245–257 (2015).

    ADS  PubMed  Google Scholar 

  • 77.

    Whelan, C. J., Brown, J. S., Schmidt, K. A., Steele, B. B. & Willson, M. F. Linking consumer–resource theory and digestive physiology: application to diet shifts. Evolut. Ecol. Res. 2, 911–934 (2000).

    Google Scholar 

  • 78.

    Petchey, O. L. Prey diversity, prey composition, and predator population dynamics in experimental microcosms. J. Anim. Ecol. 69, 874–882 (2000).

    PubMed  Google Scholar 

  • 79.

    Merrick, R. L., Chumbley, M. K. & Byrd, G. V. Diet diversity of Steller sea lions (Eumetopias jubatus) and their population decline in Alaska: a potential relationship. Can. J. Fish. Aquat. Sci. 54, 1342–1348 (1997).

    Google Scholar 

  • 80.

    Hondorp, D. W., Pothoven, S. A. & Brandt, S. B. Influence of Diporeia density on diet composition, relative abundance, and energy density of planktivorous fishes in southeast Lake Michigan. Trans. Am. Fish. Soc. 134, 588–601 (2005).

    Google Scholar 

  • 81.

    Shraim, R. et al. Environmental extremes are associated with dietary patterns in Arabian Gulf Reef fishes. Front. Mar. Sci. 4, 285 (2017).

    Google Scholar 

  • 82.

    Agorreta, A. et al. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 69, 619–633 (2013).

    PubMed  Google Scholar 

  • 83.

    Thacker, C. E. & Roje, D. M. Phylogeny of Gobiidae and identification of gobiid lineages. Syst. Biodivers. 9, 329–347 (2011).

    Google Scholar 

  • 84.

    Kovačić, M., Bogorodsky, S. V. & Mal, A. O. Two new species of Coryogalops (Perciformes: Gobiidae) from the Red Sea. Zootaxa 3881, 513–531 (2014).

    PubMed  Google Scholar 

  • 85.

    Rishworth, G. M., Strydom, N. A. & Perissinotto, R. Fishes associated with living stromatolite communities in peritidal pools: predators, recruits and ecological traps. Mar. Ecol. Prog. Ser. 580, 153–167 (2017).

    ADS  CAS  Google Scholar 

  • 86.

    Munday, P. L. & Jones, G. P. The ecological implications of small body size among coral-reef fishes. Oceanogr. Mar. Biol. Annu. Rev. 36, 373–411 (1998).

    Google Scholar 

  • 87.

    Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Norin, T. & Metcalfe, N. B. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Philos. Trans. R. Soc. B 374, 20180180 (2019).

    Google Scholar 

  • 89.

    Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).

    PubMed  Google Scholar 

  • 90.

    Crossland, C., Hatcher, B. & Smith, S. Role of coral reefs in global ocean production. Coral Reefs 10, 55–64 (1991).

    ADS  Google Scholar 

  • 91.

    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 92.

    De Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).

    ADS  PubMed  Google Scholar 

  • 93.

    Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 94.

    Hamner, W., Jones, M., Carleton, J., Hauri, I. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).

    Google Scholar 

  • 95.

    Hatcher, B. G. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).

    CAS  PubMed  Google Scholar 

  • 96.

    Bacon, P., Gurney, W., Jones, W., McLaren, I. & Youngson, A. Seasonal growth patterns of wild juvenile fish: partitioning variation among explanatory variables, based on individual growth trajectories of Atlantic salmon (Salmo salar) parr. J. Anim. Ecol. 74, 1–11 (2005).

    Google Scholar 

  • 97.

    Coles, S. L. Coral species diversity and environmental factors in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region. Atoll Res. Bull. 507, 1–19 (2003).

    Google Scholar 

  • 98.

    Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).

    CAS  PubMed  Google Scholar 

  • 99.

    Riegl, B. Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Mar. Biol. 140, 29–40 (2002).

    Google Scholar 

  • 100.

    Riegl, B. & Purkis, S. Coral population dynamics across consecutive mass mortality events. Glob. Change Biol. 21, 3995–4005 (2015).

    ADS  Google Scholar 

  • 101.

    Burt, J., Al-Harthi, S. & Al-Cibahy, A. Long-term impacts of coral bleaching events on the world’s warmest reefs. Mar. Environ. Res. 72, 225–229 (2011).

    CAS  PubMed  Google Scholar 

  • 102.

    Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A. & Al-Jailani, H. Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs 38, 567–589 (2019).

    ADS  Google Scholar 

  • 103.

    Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish. Biol. Fish. 24, 89–126 (2014).

    Google Scholar 

  • 104.

    Pratchett, M. S., Baird, A. H., Bauman, A. G. & Burt, J. A. Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates. Mar. Pollut. Bull. 114, 1031–1035 (2017).

    CAS  PubMed  Google Scholar 

  • 105.

    Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Change Biol. 10, 1642–1647 (2004).

    ADS  Google Scholar 

  • 106.

    Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).

    Google Scholar 

  • 107.

    Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919 (2019).

    PubMed  Google Scholar 

  • 108.

    Ackerman, J. L. & Bellwood, D. R. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar. Ecol.-Prog. Ser. 206, 227–237 (2000).

    ADS  Google Scholar 

  • 109.

    Beitinger, T. L., Bennett, W. A. & McCauley, R. W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fishes 58, 237–275 (2000).

    Google Scholar 

  • 110.

    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 111.

    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).

    CAS  PubMed  Google Scholar 

  • 112.

    Sherwood, A. R. & Presting, G. G. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. J. Phycol. 43, 605–608 (2007).

    Google Scholar 

  • 113.

    Hamsher, S. E., Evans, K. M., Mann, D. G., Poulíčková, A. & Saunders, G. W. Barcoding diatoms: exploring alternatives to COI-5P. Protist 162, 405–422 (2011).

    CAS  PubMed  Google Scholar 

  • 114.

    Cannon, M. et al. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River. Sci. Rep. 6, 22908 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 115.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 116.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).

    CAS  PubMed  Google Scholar 

  • 117.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  • 118.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS  Google Scholar 

  • 119.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Google Scholar 

  • 120.

    Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).

    CAS  PubMed  Google Scholar 

  • 121.

    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv https://doi.org/10.1101/081257 (2016).

  • 122.

    Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 123.

    Bürkner, P.-C. Advanced Bayesian multilevel modeling with the R Package brms. The R Journal 10, 395–411 (2018).

    Google Scholar 

  • 124.

    Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications Vol. 8 (Cambridge University Press, 1994).

  • 125.

    Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 126.

    Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • 127.

    Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  • 128.

    Brandl, S. J. et al. Supplemental materials for demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 129.

    Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish. Fish. 19, 874–889 (2018).

    Google Scholar 

  • 130.

    Allen, K. R. Relation between production and biomass. J. Fish. Board Can. 28, 1573–1581 (1971).

    Google Scholar 

  • 131.

    Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39, 175–192 (1980).

    Google Scholar 

  • 132.

    Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish. Fish. Fish. 11, 149–158 (2010).

    Google Scholar 

  • 133.

    Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs https://doi.org/10.1007/s00338-020-01969-9 (2020).

  • 134.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

  • 135.

    Wickham, H. Tidyverse: easily install and load’tidyverse’packages. R package version 1, https://CRAN.R-project.org/package=tidyverse (2017).

  • 136.

    Oksanen, J. et al. The vegan package. Commun. Ecol. Package 10, 719 (2007).

    Google Scholar 

  • 137.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  • 138.

    Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).

    Google Scholar 

  • 139.

    Kay, M. tidybayes: Tidy data and geoms for Bayesian models. R package version 1, https://doi.org/10.5281/zenodo.1468151 (2018).

  • 140.

    Chen, T., He, T., Benesty, M., Khotilovich, V. & Tang, Y. Xgboost: extreme gradient boosting. R package version 0.4-2, 1–4 (2015).

  • 141.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package “emmeans”: estimated marginal means, aka least-squares means. Compr. R. Arch. Netw. 1–67 (2019). http://CRAN.R-project.org/package=emmeans.

  • 142.

    Bauer, R. Oceanmap: a plotting toolbox for 2D oceanographic data. R package, version 0.0 9, https://CRAN.R-project.org/package=oceanmap (2017).

  • 143.

    Pierce, D. & Pierce, M. D. Package ‘ncdf4’. https://cran.r-project.org/web/packages/ncdf4/index.html (2019).

  • 144.

    Hijmans, R. J. et al. Raster package in R. https://cran.r-project.org/web/packages/raster/index.html (2013).

  • 145.

    Schiettekatte, N. M., Brandl, S. J. & Casey, J. M. fishualize: Color palettes based on fish species. https://cran.r-project.org/web/packages/fishualize/fishualize.pdf (2019).


  • Source: Ecology - nature.com

    Peering into peer review

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia