in

Gas hydrate dissociation linked to contemporary ocean warming in the southern hemisphere

[adace-ad id="91168"]
  • 1.

    Dickens, G. R. Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Climate 7, 831–846 (2011).

    Google Scholar 

  • 2.

    Pinero, E., Marquardt, M., Hensen, C., Haeckel, M. & Wallmann, K. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 10, 959–975 (2013).

    ADS  Google Scholar 

  • 3.

    Dickens, G. R. The blast in the past. Nature 401, 752–755 (1999).

    ADS  CAS  Google Scholar 

  • 4.

    Dickens, G. R. On the fate of past gas: what happens to methane released from a bacterially mediated gas hydrate capacitor. Geochem., Geophys., Geosyst. 2, 1–5 (2001).

    Google Scholar 

  • 5.

    Ruppel, C. Methane hydrates and contemporary climate change. Nat. Educ. Knowl. 3, 1–12 (2011).

    Google Scholar 

  • 6.

    Ruppel, C. & Kessler, J. D. The interaction of climate change and methane hydrates. Rev. Geophys. 55, 126–168 (2017).

    ADS  Google Scholar 

  • 7.

    Ferré, B., Mienert, J. & Feseker, T. Ocean temperature variability for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate stability on human time scales. J. Geophys. Res. https://doi.org/10.1029/2012JC008300 (2012).

  • 8.

    Phrampus, B. J. & Hornbach, M. J. Recent changes to the Gulf Stream causing widespread gas hydrate destabilization. Nature 490, 527–530 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Thatcher, K. E., Westbrook, G. K., Sarkar, S. & Minshull, T. A. Methane release from warming-induced hydrate dissociation in the West Svalbard continental margin: timing, rates, and geological controls. J. Geophys. Res. 118, 22–38 (2013).

    ADS  CAS  Google Scholar 

  • 10.

    Skarke, A., Ruppel, C., Kodis, M., Brothers, D. & Lobecker, E. Widespread methane leakage from the sea floor on the northern US Atlantic margin. Nat. Geosci. 7, 657–661 (2014).

    ADS  CAS  Google Scholar 

  • 11.

    Johnson, H. P., Miller, U. K., Salmi, M. S. & Solomon, E. A. Analysis of bubble plume distributions to evaluate methane hydrate decomposition on the continental slope. Geochem., Geophys., Geosyst. 16, 3825–3839 (2015).

    ADS  CAS  Google Scholar 

  • 12.

    Ketzer, J. M. et al. Gas seeps and gas hydrates in the Amazon deep-sea fan. Geo-Mar. Lett. 38, 429–438 (2018).

    ADS  CAS  Google Scholar 

  • 13.

    Majorowicz, J., Kirk, O. & Jan, Safanda Methane gas hydrate stability models on continental shelves in response to Glacio-Eustatic Sea level variations: examples from Canadian Oceanic margins. Energies 6, 5775–5806 (2013).

    Google Scholar 

  • 14.

    Kretschmer, K., Biastoch, A., Rüpke, L. & Burwicz, E. Modeling the fate of methane hydrates under global warming. Glob. Biogeochem. Cycles 29, 610–625 (2015).

    ADS  CAS  Google Scholar 

  • 15.

    Stranne, C. et al. Dynamic simulations of potential methane release from East Siberian continental slope sediments. Geochem., Geophys., Geosyst. 17, 872–886 (2016).

    ADS  CAS  Google Scholar 

  • 16.

    Braga, R. et al. Modelling methane hydrate stability changes and gas release due to seasonal oscillations in bottom water temperatures on the Rio Grande cone, offshore southern Brazil. Marine and Petroleum Geology 112, https://doi.org/10.1016/j.marpetgeo.2019.104071 (2020).

  • 17.

    Archer, D. Methane hydrate stability and anthropogenic climate change. Biogeosciences 4, 521–544 (2007).

    ADS  CAS  Google Scholar 

  • 18.

    Marín-Moreno, H., Minshull, T. A., Westbrook, G. K. & Sinha, B. Estimates of future warming-induced ethane emissions from hydrate offshore west Svalbard for a range of climate models. Geochem. Geophys. Geosyst. 16, 1307–1323 (2016).

    ADS  Google Scholar 

  • 19.

    Boetius, A. R. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Gentz, T. D. et al. A water column study of methane around gas flares located at the West Spitsbergen continental margin. Continental Shelf Res. 72, 107–118 (2014).

    ADS  Google Scholar 

  • 21.

    Kessler, J. D. V. et al. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331, 312–315 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Martins, L. R., Melo, U., França, A. M. C., Santana, C. I. & Martins, I. R. Distribuicao Faciologica da Margem Continental Sul Riograndense. Congr. Brasileiro de. Geologia. Belem. Bras. 26, 115–132 (1972).

    Google Scholar 

  • 23.

    Contreras, J., Zühlke, R., Bowman, S. & Bechstädt, T. Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas basins). Mar. Pet. Geol. 27, 1952–1980 (2010).

    Google Scholar 

  • 24.

    Sad, A. R. E., Silveira, D. P., & Machado, M. A. P. Marine gas hydrates evidence along the Brazilian coast. In Proc. AAPG International Conference and Exhibition, Rio de Janeiro, Brazil, Nov. 8−11 Abstract Volume (1998).

  • 25.

    Oliveira, S., Vilhena, O. & da Costa, E. Time–frequency spectral signature of Pelotas Basin deep water gas hydrates system. Mar. Geophys. Res. 31, 89–97 (2010).

    Google Scholar 

  • 26.

    Miller, D. J. et al. Natural gas hydrates in the Rio Grande Cone (Brazil): a new province in the western South Atlantic. Mar. Pet. Geol. 67, 187–196 (2015).

    CAS  Google Scholar 

  • 27.

    Giongo, A. et al. Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep Sea Res. Part I: Oceanogr. Res. Pap. 112, 45–56 (2016).

    ADS  CAS  Google Scholar 

  • 28.

    Rodrigues, L. F. et al. The influence of methane fluxes on the sulfate/methane interface in sediments from the Rio Grande Cone Gas Hydrate Province, southern Brazil. Braz. J. Geol. 47, 369–381 (2017).

    Google Scholar 

  • 29.

    Ketzer, M. et al. Gas seeps at the edge of the gas hydrate stability zone on Brazil’s continental margin. Geosciences https://doi.org/10.3390/geosciences9050193 (2019).

  • 30.

    Abegg, F. A. A.L. The acoustic turbid layer in muddy sediments of Eckernfoerde Bay, Western Baltic- methane concentration, saturation and bubble characteristics. Mar. Geol. 137, 137–147 (1997).

    ADS  CAS  Google Scholar 

  • 31.

    Mathys, M., Thießen, O., Theilen, F. & Schmidt, M. Seismic characterisation of gas-rich near surface sediments in the Arkona Basin, Baltic Sea. Mar. Geophys. Res. 26, 207–224 (2005).

    Google Scholar 

  • 32.

    Hilligsøe, K. M. et al. Methane fluxes in marine sediments quantified through core analyses and seismo-acoustic mapping (Bornholm Basin, Baltic Sea). Geochim. Cosmochim. Acta 239, 255–274 (2018).

    ADS  Google Scholar 

  • 33.

    Hovland, M., Heggland, R., De Vries, M. H. & Tjelta, T. I. Unit-pockmarks and their potential significance for predicting fluid flow. Mar. Pet. Geol. 27, 1190–1199 (2010).

    CAS  Google Scholar 

  • 34.

    Tishchenko, P., Hensen, C., Wallmann, K. & Wong, C. S. Calculation of the stability and solubility of methane hydrate in seawater. Chem. Geol. 219, 37–52 (2005).

    ADS  CAS  Google Scholar 

  • 35.

    Römer, M., Sahiling, H., Pape, T., Bohrmann, G. & Spiess, V. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J. Geophys. Res. 117, 1–19 (2012).

    Google Scholar 

  • 36.

    Veloso, M., Greinert, J., Mienert, J. & De Batist, M. A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: examples from the Arctic offshore NW‐Svalbard: quantifying bubble flow rates in deep water. Limnol. Oceanogr. 13, 267–287 (2015).

    Google Scholar 

  • 37.

    Leifer, I. & Culling, D. Formation of seep bubble plumes in the Coal Oil Point seep field. Geo-Mar. Lett. 30, 339–353 (2010).

    ADS  CAS  Google Scholar 

  • 38.

    Sahling, H. R. et al. Emissions at the continental margin west of Svalbard: mapping, sampling, and quantification. Biogeosciences 11, 6029–6046 (2014).

    ADS  Google Scholar 

  • 39.

    Römer, M. R., Scherwath, M., Heesemann, M. & Spence, G. Tidally controlled gas bubble emissions: a comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island. Geochem., Geophys. Geosyst. 17, 3797–3814 (2016).

    ADS  Google Scholar 

  • 40.

    Borowski, W. S., Paull, C. K. & Ussler, W. III Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology 24, 655–658 (1996).

    ADS  CAS  Google Scholar 

  • 41.

    Haacke, R. R. et al. Migration and venting of deep gases into the ocean through hydrate-choked chimneys offshore Korea. Geology 37, 531–534 (2009).

    ADS  CAS  Google Scholar 

  • 42.

    Egger, M., Riedinger, N., Mogollón, J. M. & Jørgensen, B. B. Global diffusive fluxes of methane in marine sediments. Nat. Geosci. 11, 421–425 (2018).

    ADS  CAS  Google Scholar 

  • 43.

    Martens, C. S. A. K. & Val Klump, J. Biogeochemical cycling in an organic-rich coastal marine basin-I. Methane sediment-water exchange processes. Mar. Geol. 137, 137–147 (1980).

    Google Scholar 

  • 44.

    Stranne, C., O’Regan, M. & Jakobsson, M. Modeling fracture propagation and seafloor gas release during seafloor warming-induced hydrate dissociation. Geophys. Res. Lett. 44, 8510–8519 (2017).

    ADS  Google Scholar 

  • 45.

    Stranne, C. et al. Can anaerobic oxidation of methane prevent seafloor gas escape in a warming climate? Solid Earth 10, 1541–1554 (2019).

    ADS  Google Scholar 

  • 46.

    Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    CAS  PubMed  Google Scholar 

  • 47.

    Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).

    ADS  CAS  Google Scholar 

  • 48.

    Milkov, A. V. Molecular and stable isotope compositions of natural gas hydrates: a revised global dataset and basic interpretations in the context of geological settings. Org. Geochem. 36, 681–702 (2005).

    CAS  Google Scholar 

  • 49.

    Horozal, S. B. et al. Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: potential linkage between the occurrence of mass failures and gas hydrate dissociation. Mar. Pet. Geol. 80, 171–191 (2017).

    CAS  Google Scholar 

  • 50.

    Mienert, J. et al. Ocean warming and gas hydrate stability on the mid- Norwegian margin at the Storegga Slide. Mar. Pet. Geol. 22, 233–244 (2005).

    CAS  Google Scholar 

  • 51.

    Brothers, D. S. et al. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin. Geophys. Res. Lett. 41, 96–101 (2014).

    ADS  Google Scholar 

  • 52.

    Portilho-Ramos, R. C. et al. Methane release from the southern Brazilian margin during the last glacial. Sci. Rep. 8, 5948 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Chiessi, C. M. et al. Atlantic interocean exchange as the trigger for the Bølling warm event. Geology 36, 919–922 (2008).

    ADS  CAS  Google Scholar 

  • 54.

    Talley, L. D. in The South Atlantic: Present and Past Circulation (ed Wefer, G. et al.) 219–238 (Springer-Verlag, 1996).

  • 55.

    Schmidtko, S. & Johnson, G. C. Multidecadal warming and shoaling of Antarctic intermediate water. J. Clim. 25, 207–221 (2012).

    ADS  Google Scholar 

  • 56.

    Westbrook, G. K. et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett. 36, 1–5 (2009).

    Google Scholar 

  • 57.

    Reagan, M. T., Moridis, G. J., Elliott, S. M. & Maltrud, M. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes. J. Geophys. Res. 116, 1–11 (2011).

    Google Scholar 

  • 58.

    Zhao, J., Meng, J., Zhang, H. & Wang, S. Comprehensive detection of gas plumes from multibeam water column images with minimisation of noise interferences. Sensors https://doi.org/10.3390/s17122755 (2017).

  • 59.

    Peng, D. & Robinson, D. B. A new two-constant equation of state. Ind. Eng. Chem. Fundamentals 15, 59–64 (1976).

    CAS  Google Scholar 

  • 60.

    Berndt, C. F. et al. Constraints on hydrate-controlled methane seepage off Svalbard. Science 343, 284–287 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 61.

    Sun, M. S. Z. et al. Dissolved methane in the East China Sea: distribution, seasonal variation and emission. Mar. Chem. 202, 12–26 (2018).

    CAS  Google Scholar 

  • 62.

    Ferré, B. J. et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nat. Geosci. 13, 144–148 (2020).

    ADS  Google Scholar 

  • 63.

    Boudreau, B. P. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 60, 3139–3142 (1996).

    ADS  CAS  Google Scholar 

  • 64.

    Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I: Oceanogr. Res. Pap. 55, 50–72 (2008).

    ADS  Google Scholar 

  • 65.

    Mondol, N. H., Bjørlykke, K., Jahren, J. & Høeg, K. Experimental mechanical compaction of clay mineral aggregates—changes in physical properties of mudstones during burial. Mar. Pet. Geol. 24, 289–311 (2007).

    Google Scholar 


  • Source: Ecology - nature.com

    Colonization history affects heating rates of invasive cane toads

    $25 million gift launches ambitious new effort tackling poverty and climate change