in

Genetic tropicalisation following a marine heatwave

[adace-ad id="91168"]
  • 1.

    Sath, I. P. C. C. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 151 (IPCC Press, Geneva, 2014).

    Google Scholar 

  • 2.

    Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    ADS  Article  Google Scholar 

  • 3.

    Grant, P. R. et al. Evolution caused by extreme events. Philos. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2016.0146 (2017).

    ADS  Article  Google Scholar 

  • 4.

    Jangjoo, M., Matter, S. F., Roland, J. & Keyghobadi, N. Connectivity rescues genetic diversity after a demographic bottleneck in a butterfly population network. Proc. Natl. Acad. Sci. USA 113, 10914–10919. https://doi.org/10.1073/pnas.1600865113 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Gaines, S. D. & Denny, M. W. The largest, smallest, highest, lowest, longest, and shortest: Extremes in ecology. Ecology 74, 1677–1692 (1993).

    Article  Google Scholar 

  • 6.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172. https://doi.org/10.1126/science.aad8745 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    Vincenzi, S., Mangel, M., Jesensek, D., Garza, J. C. & Crivelli, A. J. Genetic and life-history consequences of extreme climate events. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.2118 (2017).

    Article  Google Scholar 

  • 8.

    Poff, N. L. et al. Extreme streams: Species persistence and genomic change in montane insect populations across a flooding gradient. Ecol. Lett. 21, 525–535. https://doi.org/10.1111/ele.12918 (2018).

    Article  PubMed  Google Scholar 

  • 9.

    Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–497. https://doi.org/10.1126/science.aam5512 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    Wernberg, T. et al. Genetic diversity and kelp forest vulnerability to climatic stress. Sci. Rep. Uk 8, 1851. https://doi.org/10.1038/s41598-018-20009-9 (2018).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238. https://doi.org/10.1016/j.pocean.2015.12.014 (2016).

    ADS  Article  Google Scholar 

  • 12.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. https://doi.org/10.1038/s41467-018-03732-9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306. https://doi.org/10.1038/s41558-019-0412-1 (2019).

    ADS  Article  Google Scholar 

  • 14.

    Straub, S. C. et al. Resistance, extinction, and everything in between—the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00763 (2019).

    Article  Google Scholar 

  • 15.

    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00499 (2019).

    Article  Google Scholar 

  • 16.

    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00084 (2019).

    Article  Google Scholar 

  • 17.

    Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. Uk 9, 15050. https://doi.org/10.1038/s41598-019-51114-y (2019).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Bell, T. M., Strand, A. E. & Sotka, E. E. The adaptive cline at LDH (Lactate Dehydrogenase) in Killifish Fundulus heteroclitus remains stationary after 40 years of warming Estuaries. J. Hered. 105, 566–571. https://doi.org/10.1093/jhered/esu016 (2014).

    Article  PubMed  Google Scholar 

  • 19.

    Hilbish, T. J. et al. Change and stasis in marine hybrid zones in response to climate warming. J. Biogeogr. 39, 676–687. https://doi.org/10.1111/j.1365-2699.2011.02633.x (2012).

    Article  Google Scholar 

  • 20.

    Gurgel, C. F. D., Camacho, O., Minne, A. J. P., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30, 1199–1206. https://doi.org/10.1016/j.cub.2020.01.051 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 102, 2826–2831. https://doi.org/10.1073/pnas.0500008102 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 22.

    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173. https://doi.org/10.5670/oceanog.2018.205 (2018).

    Article  Google Scholar 

  • 23.

    Pearce, A. et al. The “Marine Heat Wave” off Western Australia During the Summer of 2010/11. (Government of Western Australia, Department of Fisheries., Western Australia, 2011).

  • 24.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/Nclimate1627 (2013).

    ADS  Article  Google Scholar 

  • 25.

    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2012.2829 (2013).

    Article  Google Scholar 

  • 26.

    Moore, J. A. Y. et al. Unprecedented mass bleaching and loss of coral across 12° of latitude in Western Australia in 2010–11. PLoS One 7, e51807. https://doi.org/10.1371/journal.pone.0051807 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593. https://doi.org/10.1002/ece3.2137 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Bennett, S. et al. The “Great Southern Reef”: Social, ecological and economic value of Australia’s neglected kelp forests. Mar. Freshw. Res. 67, 47–56. https://doi.org/10.1071/Mf15232 (2016).

    Article  Google Scholar 

  • 29.

    Coleman, M. A. & Wernberg, T. Forgotten underwater forests: The key role of fucoids on Australian temperate reefs. Ecol. Evol. 7, 8406–8418. https://doi.org/10.1002/ece3.3279 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Wernberg, T. et al. Biology and ecology of the globally significant kelp Ecklonia radiata. Oceanogr. Mar. Biol. Annu. Rev. 20, 20 (2019).

    Google Scholar 

  • 31.

    Feng, M., McPhaden, M. J., Xie, S.-P. & Hafner, J. L. Niña forces unprecedented Leeuwin current warming in 2011. Sci. Rep. Uk 3, 1277. https://doi.org/10.1038/srep01277 (2013).

    CAS  Article  Google Scholar 

  • 32.

    Coleman, M. A., Vytopil, E., Goodsell, P. J., Gillanders, B. M. & Connell, S. D. Diversity and depth-related patterns of mobile invertebrates associated with kelp forests. Mar. Freshw. Res. 58, 589–595. https://doi.org/10.1071/Mf06216 (2007).

    Article  Google Scholar 

  • 33.

    Coleman, M. A. & Kennelly, S. J. Microscopic assemblages in kelp forests and urchin barrens. Aquat. Bot. 154, 66–71. https://doi.org/10.1016/j.aquabot.2019.01.005 (2019).

    Article  Google Scholar 

  • 34.

    Coleman, M. A. & Wernberg, T. Genetic and morphological diversity in sympatric kelps with contrasting reproductive strategies. Aquat. Biol. 27, 65–73. https://doi.org/10.3354/ab00698 (2018).

    Article  Google Scholar 

  • 35.

    Coleman, M. A. et al. Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp. J. Ecol. 99, 1026–1032. https://doi.org/10.1111/j.1365-2745.2011.01822.x (2011).

    Article  Google Scholar 

  • 36.

    Little, A. G., Fisher, D. N., Schoener, T. W. & Pruitt, J. N. Population differences in aggression are shaped by tropical cyclone-induced selection. Nat. Ecol. Evol. 3, 1294–1297. https://doi.org/10.1038/s41559-019-0951-x (2019).

    Article  PubMed  Google Scholar 

  • 37.

    Schiebelhut, L. M., Puritz, J. B. & Dawson, M. N. Decimation by sea star wasting disease and rapid genetic change in a keystone species, Pisaster ochraceus. Proc. Natl. Acad. Sci. 115, 7069. https://doi.org/10.1073/pnas.1800285115 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Coleman, M. A., Gillanders, B. M. & Connell, S. D. Dispersal and gene flow in the habitat-forming kelp, Ecklonia radiata: Relative degrees of isolation across an east–west coastline. Mar. Freshw. Res. 60, 802–809. https://doi.org/10.1071/Mf08268 (2009).

    CAS  Article  Google Scholar 

  • 39.

    Coleman, M. A. et al. Connectivity within and among a network of temperate marine reserves. PLoS One https://doi.org/10.1371/journal.pone.0020168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Itou, T. et al. Development of 12 polymorphic microsatellite DNA markers for the kelp Ecklonia cava (Phaeophyceae, Laminariales). Conserv. Genet. Resour. 4, 459–461. https://doi.org/10.1007/s12686-011-9574-5 (2012).

    Article  Google Scholar 

  • 41.

    Akita, S. et al. Development of 11 Ecklonia radicosa (Phaeophyceae, Laminariales) SSRs markers using next-generation sequencing and intra-genus amplification analysis. J. Appl. Phycol. 30, 2111–2115. https://doi.org/10.1007/s10811-018-1406-5 (2018).

    CAS  Article  Google Scholar 

  • 42.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).

    CAS  Article  Google Scholar 

  • 43.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article  PubMed  Google Scholar 

  • 44.

    Agapow, P.-M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x (2001).

    CAS  Article  Google Scholar 

  • 45.

    Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48, 361–372 (1992).

    CAS  Article  Google Scholar 

  • 46.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 402, logiciel sous Windows TM pour la génétique des populations (2000).

  • 48.

    Jueterbock, A., Coyer, J. A., Olsen, J. L. & Hoarau, G. Decadal stability in genetic variation and structure in the intertidal seaweed Fucus serratus (Heterokontophyta: Fucaceae). BMC Evol. Biol. 18, 94–94. https://doi.org/10.1186/s12862-018-1213-2 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486. https://doi.org/10.1093/oxfordjournals.jhered.a111627 (1995).

    Article  Google Scholar 

  • 50.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article  Google Scholar 

  • 52.

    Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32. https://doi.org/10.1111/1755-0998.12509 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).

    CAS  Article  Google Scholar 

  • 54.

    Luikart, G. & Cornuet, J.-M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237. https://doi.org/10.1111/j.1523-1739.1998.96388.x (1998).

    Article  Google Scholar 

  • 55.

    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Bohonak, A. J. IBD (isolation by distance): A program for analyses of isolation by distance. J. Hered. 93, 153–154. https://doi.org/10.1093/jhered/93.2.153 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl. Acad. Sci. 113, 13791–13796. https://doi.org/10.1073/pnas.1610725113 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2014.0846 (2014).

    Article  Google Scholar 

  • 59.

    Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013. https://doi.org/10.1111/1365-2435.13310 (2019).

    Article  Google Scholar 

  • 60.

    Wielstra, B. Historical hybrid zone movement: More pervasive than appreciated. J. Biogeogr. 46, 1300–1305. https://doi.org/10.1111/jbi.13600 (2019).

    Article  Google Scholar 

  • 61.

    Taylor, S. A. et al. Climate-mediated movement of an avian hybrid zone. Curr. Biol. 24, 671–676. https://doi.org/10.1016/j.cub.2014.01.069 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Taylor, S. A., Larson, E. L. & Harrison, R. G. Hybrid zones: Windows on climate change. Trends Ecol. Evol. 30, 398–406. https://doi.org/10.1016/j.tree.2015.04.010 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Wernberg, T. & Connell, S. D. Physical disturbance and subtidal habitat structure on open rocky coasts: Effects of wave exposure, extent and intensity. J. Sea Res. 59, 237–248. https://doi.org/10.1016/j.seares.2008.02.005 (2008).

    ADS  Article  Google Scholar 

  • 64.

    Wernberg, T. et al. Decreasing resilience of kelp beds along a latitudinal temperature gradient: Potential implications for a warmer future. Ecol. Lett. 13, 685–694. https://doi.org/10.1111/j.1461-0248.2010.01466.x (2010).

    Article  PubMed  Google Scholar 

  • 65.

    Bennett, S., Wernberg, T., Joy, B. A., De Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun. https://doi.org/10.1038/ncomms10280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Wernberg, T., de Bettignies, T., Bijo, A. J. & Finnegan, P. Physiological responses of habitat-forming seaweeds to increasing temperatures. Limnol. Oceanogr. 61, 2180–2190 (2016).

    ADS  Article  Google Scholar 

  • 67.

    Coleman, M. A., Feng, M., Roughan, M., Cetina-Heredia, P. & Connell, S. D. Temperate shelf water dispersal by Australian boundary currents: Implications for population connectivity. Limnol. Oceanogr. Fluids Environ. 3, 295–309. https://doi.org/10.1215/21573689-2409306 (2013).

    Article  Google Scholar 

  • 68.

    Mohring, M. B., Wernberg, T., Kendrick, G. A. & Rule, M. J. Reproductive synchrony in a habitat-forming kelp and its relationship with environmental conditions. Mar. Biol. 160, 119–126. https://doi.org/10.1007/s00227-012-2068-5 (2013).

    Article  Google Scholar 

  • 69.

    Barshis, D. J. et al. Coastal upwelling is linked to temporal genetic variability in the acorn barnacle Balanus glandula. Mar. Ecol. Prog. Ser. 439, 139–150 (2011).

    ADS  Article  Google Scholar 

  • 70.

    Planes, S. & Lenfant, P. Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol. Ecol. 11, 1515–1524. https://doi.org/10.1046/j.1365-294X.2002.01521.x (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 71.

    Toonen, R. J. & Grosberg, R. K. Phylogeography and Population Genetics in Crustacea (eds S. Koenemann, C. Held, & C. Schubart) 75–107 (CRC Press, Boca Raton, 2011).

  • 72.

    Becheler, R. et al. After a catastrophe, a little bit of sex is better than nothing: Genetic consequences of a major earthquake on asexual and sexual populations. Evol. Appl. https://doi.org/10.1111/eva.12967 (2020).

    Article  Google Scholar 

  • 73.

    Hoffmann, A. J. & Santelices, B. Banks of algal microscopic forms: Hypotheses on their functioning and comparisons with seed banks. Mar. Ecol. Prog. Ser. 79, 185–194 (1991).

    ADS  Article  Google Scholar 

  • 74.

    Carney, L. T., Bohonak, A. J., Edwards, M. S. & Alberto, F. Genetic and experimental evidence for a mixed-age, mixed-origin bank of kelp microscopic stages in southern California. Ecology 94, 1955–1965. https://doi.org/10.1890/13-0250.1 (2013).

    Article  PubMed  Google Scholar 

  • 75.

    Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397. https://doi.org/10.1086/688018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Pardo-Diaz, C., Salazar, C. & Jiggins, C. D. Towards the identification of the loci of adaptive evolution. Methods Ecol. Evol. 6, 445–464. https://doi.org/10.1111/2041-210x.12324 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Staehr, P. A. & Wernberg, T. Physiological responses of Ecklonia Radiata (Laminariales) to a latitudinal gradient in ocean temperature. J. Phycol. 45, 91–99. https://doi.org/10.1111/j.1529-8817.2008.00635.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 78.

    Wernberg, T. in Ecosystem Collapse and Climate Change. (eds Canadell JG & Jackson RB) (Springer-Nature, 2020).

  • 79.

    Nicastro, K. R. et al. Shift happens: Trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol. 11, 6. https://doi.org/10.1186/1741-7007-11-6 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 80.

    Coleman, M. A. & Goold, H. Harnessing synthetic biology for kelp forest conservation. J. Phycol. 55, 745–751. https://doi.org/10.1111/jpy.12888 (2019).

    Article  PubMed  Google Scholar 

  • 81.

    Wood, G. et al. Restoring subtidal marine macrophytes in the Anthropocene: Trajectories and future-proofing. Mar. Freshw. Res. 70, 936–951. https://doi.org/10.1071/MF18226 (2019).

    Article  Google Scholar 

  • 82.

    Martínez, B. et al. Predictions of responses to ocean warming for habitat-forming seaweeds. Divers. Distrib. 24, 1350–1366 (2018).

    Article  Google Scholar 

  • 83.

    Coleman, M. et al. Restore or redefine: Future trajectories for restoration. Front. Mar. Sci. 7, 20 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Colonization history affects heating rates of invasive cane toads

    $25 million gift launches ambitious new effort tackling poverty and climate change