in

How Joannites’ economy eradicated primeval forest and created anthroecosystems in medieval Central Europe

[adace-ad id="91168"]
  • 1.

    Carpenter, S. R. & Scheffer, M. Critical transitions and regime shifts in ecosystems: consolidating recent advances. New Models for Ecosystem Dynamics and Restoration 22–32 (2009).

  • 2.

    Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).

    ADS  CAS  Google Scholar 

  • 3.

    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 116, 23209–23215 (2019).

    ADS  CAS  Google Scholar 

  • 4.

    Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1010–1035 (2011).

    ADS  Google Scholar 

  • 5.

    Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).

    ADS  CAS  Google Scholar 

  • 6.

    Marchant, R. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).

    ADS  Google Scholar 

  • 7.

    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quatern. Sci. Rev. 28, 3016–3034 (2009).

    ADS  Google Scholar 

  • 8.

    Czerniak, L. & Pyzel, J. Neolithic farmers and the introduction of pottery in the south Baltic. Bericht Römisch-Germanischen Kommission 89, 347–360 (2011).

    Google Scholar 

  • 9.

    Willis, K. J., Gillson, L. & Brncic, T. M. How, “virgin” is virgin rainforest?. Science 304, 402–403 (2004).

    CAS  Google Scholar 

  • 10.

    Seddon, A. W. R. What do we mean by regime shift? Distinguishing between extrinsic and intrinsic forcing in paleoecological data. Past Glob. Changes Mag. 25, 94–95 (2017).

    Google Scholar 

  • 11.

    Loughlin, N. J. D., Gosling, W. D., Mothes, P. & Montoya, E. Ecological consequences of post-Columbian indigenous depopulation in the Andean-Amazonian corridor. Nat. Ecol. Evol. 2, 1233–1236 (2018).

    Google Scholar 

  • 12.

    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Lamentowicz, M. et al. Always on the tipping point—a search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quatern. Sci. Rev. 225, 105954 (2019).

    Google Scholar 

  • 14.

    Ralska-Jasiewiczowa, M. et al. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps (W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 2004).

    Google Scholar 

  • 15.

    Clifford, M. J. & Booth, R. K. Late-holocene drought and fire drove a widespread change in forest community composition in eastern North America. Holocene 25, 1102–1110 (2015).

    ADS  Google Scholar 

  • 16.

    Davies, L. J. et al. High-resolution age modelling of peat bogs from northern Alberta, Canada, using pre- and post-bomb 14 C, 210 Pb and historical cryptotephra. Quat. Geochronol. 47, 138–162 (2018).

    Google Scholar 

  • 17.

    Kołaczek, P., Karpińska-Kołaczek, M., Marcisz, K., Gałka, M. & Lamentowicz, M. Palaeohydrology and the human impact on one of the largest raised bogs complex in the Western Carpathians (Central Europe) during the last two millennia. Holocene 28, 595–608 (2018).

    ADS  Google Scholar 

  • 18.

    Marcisz, K. et al. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quatern. Sci. Rev. 112, 138–152 (2015).

    ADS  Google Scholar 

  • 19.

    Hildebrandt-Radke, I. & Makohonienko, M. Krajobraz kulturowy Wielkopolski w pradziejach i czasach historycznych: wprowadzenie. Landform Anal. 16, 17–19 (2011).

    Google Scholar 

  • 20.

    Makohonienko, M. Przyrodnicza historia Gniezna (Homini, Bydgoszcz-Poznań, 2000).

    Google Scholar 

  • 21.

    Brown, A. & Pluskowski, A. Detecting the environmental impact of the Baltic Crusades on a late-medieval (13th–15th century) frontier landscape: palynological analysis from Malbork Castle and hinterland, Northern Poland. J. Archaeol. Sci. 38, 1957–1966 (2011).

    Google Scholar 

  • 22.

    Stivrins, N. et al. Palaeoenvironmental evidence for the impact of the crusades on the local and regional environment of medieval (13th-16th century) northern Latvia, eastern Baltic. The Holocene 1–10 (2015).

  • 23.

    Wacnik, A. et al. Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: combined pollen, geochemical and historical data. Veg. Hist. Archaeobot. 25, 479–498 (2016).

    Google Scholar 

  • 24.

    Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. Landscape hydrology The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).

  • 25.

    Colombaroli, D. & Gavin, D. G. Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon. Proc. Natl. Acad. Sci. 107, 18909–18914 (2010).

    ADS  CAS  Google Scholar 

  • 26.

    Bonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R. Peatland Restoration and Ecosystem Services: Science, Policy and Practice (Cambridge University Press, Cambridge, 2016).

    Google Scholar 

  • 27.

    Ireland, A. W. & Booth, R. K. Upland deforestation triggered an ecosystem state-shift in a kettle peatland. J. Ecol. 100, 586–596 (2012).

    Google Scholar 

  • 28.

    Joosten, H., Tanneberger, F. & Moen, A. Mires and peatlands in Europe “Stuttgart, Germany”, 2017).

  • 29.

    Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).

    ADS  CAS  Google Scholar 

  • 30.

    Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C. & Lamentowicz, M. Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene. Quatern. Sci. Rev. 231, 106180 (2020).

    Google Scholar 

  • 31.

    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).

    Google Scholar 

  • 32.

    Poppick, L. Resilient Peatlands Keep Carbon Bogged Down. Eos 100, (2019).

  • 33.

    Gorham, E. & Rochefort, L. Peatland restoration: A brief assessment with special reference to Sphagnum bogs. Wetl. Ecol. Manag. 11, 109–119 (2003).

    CAS  Google Scholar 

  • 34.

    Calder, W. J. & Shuman, B. Detecting past changes in vegetation resilience in the context of a changing climate. Biol. Lett. 15, 20180768 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    de Jong, R. et al. in Changing Climates, Earth Systems and Society. Series: International Year of Planet Earth (ed Dodson, J.) 85–121 (Springer, Heidelberg, 2010).

  • 36.

    Marcinkian, A. Ziemia lubuska w dobie cywilizacji łużyckiej, cz. 2 Zielona Góra, 2010).

  • 37.

    Urbańska, A. & Kurnatowski, S. in Studia nad początkami i rozplanowaniem miast na środkową Odrą i dolna Warta (województwo zielonogórskie) t. 1: Ziemia Lubuska, Nowa Marchia, Wielkopolska (ed Zdzisław Kaczmarczyk, A. W.) 35–111 Zielona Góra, 1967).

  • 38.

    Weiss, A. Organizacja diecezji lubuskiej w średniowieczu Lublin, 1970).

  • 39.

    Labuda, G. Zajęcie Ziemi Lubuskiej przez margrabiów brandenburskicj w połowie XIII wieku. Śląski Kwartalnik Historyczny „Sobótka” 28, 311–322 (1973).

  • 40.

    Przybył, M. in Cognitioni Gestorum. Studia z dziejów średniowiecza dedykowane Profesorowi Jerzemu Strzelczykowi (eds Sikorski, D. A. & Wyrwa, A. M.) 395–404 Poznań-Warszawa, 2006).

  • 41.

    Zajchowska, S. in tudia nad początkami i rozplanowaniem miast na środkową Odrą i dolna Warta (województwo zielonogórskie) t. 1: Ziemia Lubuska, Nowa Marchia, Wielkopolska (eds Kaczmarczyk, Z. & Wędzki, A.) 113–126 Zielona Góra, 1967).

  • 42.

    Wasilkiewicz, K. Templariusze i Joannici w biskupstwie lubuskim (XIII-XVI w.) Gniezno, 2016).

  • 43.

    Carsten, F. L. Essays in German History (A&C Black, 1985).

  • 44.

    Piskorski, J. M. Kolonizacja wiejska Pomorza Zachodniego w XIII i w początkach XIV wieku na tle procesów osadniczych w średniowiecznej Europie (Poznańskie Tow, Przyjaciół Nauk, 1990).

    Google Scholar 

  • 45.

    Chmarzyński, G. Zamek w Łagowie. Pamiętnik Związku Historyków Sztuki i Kultury 1, 55–87 (1948).

    Google Scholar 

  • 46.

    Lamentowicz, M. & Mitchell, E. A. D. The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microb. Ecol. 50, 48–63 (2005).

    Google Scholar 

  • 47.

    van Geel, B. in Tracking environmental change using lake sediments. Volume 3: Terrestrial, Algal and Siliceous Indicators (eds Smol, J. P., Birks, H. J. B. & Last, W. M.) 99–119 (Kluwer Academic Publishers, Dortrecht, 2001).

  • 48.

    Davies, A. L. Dung fungi as an indicator of large herbivore dynamics in peatlands. Rev. Palaeobot. Palynol. 271, 104108 (2019).

    Google Scholar 

  • 49.

    Cywa, K. Trees and shrubs used in medieval Poland for making everyday objects. Veg. Hist. Archaeobot. 27, 111–136 (2018).

    Google Scholar 

  • 50.

    Kurnatowska, Z. & Łosińska, A. in Człowiek a środowisko w środkowym i dolnym Nadodrzu 161–173 Wrocław, 1996).

  • 51.

    Warner, B. G., Kubiw, H. J. & Hanf, K. I. An anthropogenic cause for quaking mire formation in southwestern Ontario. Nature 340, 380–384 (1989).

    ADS  Google Scholar 

  • 52.

    Ellis, E. C. et al. Used planet: A global history. Proc. Natl. Acad. Sci. USA 110, 7978–7985 (2013).

    ADS  CAS  Google Scholar 

  • 53.

    Haldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc Natl Acad Sci USA 115, 3210 (2018).

    ADS  CAS  Google Scholar 

  • 54.

    Czerwiński, S. et al. Znaczenie wspólnych badań historycznych i paleoekologicznych nad wpływem człowieka na środowisko. Przykład ze stanowiska Kazanie we wschodniej Wielkopolsce. Studia Geohistorica 56 (2020).

  • 55.

    Brown, A. et al. The ecological impact of conquest and colonization on a medieval frontier landscape: combined palynological and geochemical analysis of lake sediments from Radzyń Chełminski, northern Poland. Geoarchaeology 30, 511–527 (2015).

    Google Scholar 

  • 56.

    Jaroszewicz, B. et al. Białowieża forest—a relic of the high naturalness of European Forests. Forests 10, 849 (2019).

  • 57.

    Sabatini, F. M. et al. Where are Europe’s last primary forests. Divers. Distrib. 24, 1426–1439 (2018).

    Google Scholar 

  • 58.

    Ludat, H. Das Lebuser Stiftsregister von 1405. Studien zu den Sozial- und Wirtschaftsverhältnissen im mittleren Oderraum zu Beginn des 15 Wiesbaden, 1965).

  • 59.

    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    ADS  CAS  Google Scholar 

  • 60.

    Hájek, T. in Photosynthesis in Bryophytes and Early Land Plants, Advances in Photosynthesis and Respiration (eds Hanson, D. T. & Rice, S. K.) 233–252 (Springer Science+Business Media, Dordrecht, 2014).

  • 61.

    Lamentowicz, M., Tobolski, K. & Mitchell, E. A. D. Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. The Holocene 17, 1185–1196 (2007).

    ADS  Google Scholar 

  • 62.

    Słowiński, M. et al. Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manag. 236, 755–768 (2019).

    Google Scholar 

  • 63.

    Gorham, E., Janssens, J. A., Wheeler, G. A. & Glaser, P. H. The natural and anthropogenic acidification of peatlands. Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems. Proc. Toronto, 1985 493–512 (1987).

  • 64.

    Pawlyta, J. & Lamentowicz, M. in Methods of absolute chronology 10th International conference, Gliwice, Poland, 22–25th April 2010 (2010).

  • 65.

    Lamentowicz, M. & Obremska, M. A rapid response of testate amoebae and vegetation to inundation of a kettle hole mire. J. Paleolimnol. 43, 499–511 (2010).

    ADS  Google Scholar 

  • 66.

    Zaccone, C. et al. Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy. Sci. Rep. 7, 43040 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Korcz, W. Historyczne losy ziem pogranicza lubusko-wielkopolskiego na tle dziejów ziemi lubuskiej. Rocznik Lubuski 40–85 (1966).

  • 68.

    Ellis, E. C. Ecology in an anthropogenic biosphere. Ecol. Monogr. 85, 287–331 (2015).

    Google Scholar 

  • 69.

    Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    CAS  Google Scholar 

  • 70.

    Bronk Ramsey, C. Deposition models for chronological records. Quatern. Sci. Rev. 27, 42–60 (2008).

    ADS  Google Scholar 

  • 71.

    Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).

    CAS  Google Scholar 

  • 72.

    Reimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years Cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Google Scholar 

  • 73.

    Berglund, B. E. & Ralska-Jasiewiczowa, M. in Handbook of Holocene Paleoecology and Paleohydrology (ed Berglund, B. E.) 455–484 (Wiley & Sons Ltd., Chichester-Toronto, 1986).

  • 74.

    Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen Analysis (Blackwell Scientific Publication, 1991).

  • 75.

    Beug, H.-J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (Verlag Dr. Friedrich Pfeil, München, 2004).

    Google Scholar 

  • 76.

    van Geel, B. & Aptroot, A. Fossil ascomycetes in quaternary deposits. Nova Hedwigia 82, 313–329 (2006).

    Google Scholar 

  • 77.

    Behre, K.-E. The interpretation of anthopogenic indicators in pollen diagrams. Pollen Spores 23, 225–245 (1981).

    Google Scholar 

  • 78.

    Poska, A., Saarse, L. & Veski, S. Reflections of pre- and early-agrarian human impact in the pollen diagrams of Estonia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 209, 37–50 (2004).

    Google Scholar 

  • 79.

    Gaillard, M.-J. Pollen methods and studies/archaeological applications. Encyclop. Quatern. Sci. 3, 880–904 (2013).

    Google Scholar 

  • 80.

    Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. The Holocene 13, 499–505 (2003).

    ADS  Google Scholar 

  • 81.

    Finsinger, W. & Tinner, W. Minimum count sums for charcoalconcentration estimates in pollen slides: accuracy and potential errors. The Holocene 15, 293–297 (2005).

    ADS  Google Scholar 

  • 82.

    Davis, M. B. & Deevey, E. S. J. Pollen accumulation rates: estimates from late-glacial sediment of Roger Lake. Science 145, 1293–1295 (1964).

    ADS  CAS  Google Scholar 

  • 83.

    Feurdean, A. et al. Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. For. Ecol. Manage. 389, 15–26 (2017).

    Google Scholar 

  • 84.

    Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quatern. Sci. Rev. 28, 555–576 (2009).

    ADS  Google Scholar 

  • 85.

    Mauquoy, D. & van Geel, B. in Encyclopedia of Quaternary Science (Elsevier, Amsterdam, 2007).

  • 86.

    Booth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires Peat 7, 1–7 (2010).

    Google Scholar 

  • 87.

    Payne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42, 483–495 (2008).

    Google Scholar 

  • 88.

    Clarke, K. J. Guide to Identification of Soil Protozoa – Testate Amoebae (Freshwater Biological Association, Ambleside, 2003).

    Google Scholar 

  • 89.

    Grospietsch, T. Wechseltierchen (Rhizopoden) (Kosmos Verlag, Stuttgart, 1958).

    Google Scholar 

  • 90.

    Mazei, Y. & Tsyganov, A. N. Freshwater Testate Amoebae (KMK, Moscow, 2006).

    Google Scholar 

  • 91.

    Ogden, C. G. & Hedley, R. H. An Atlas of Freshwater Testate Amoebae (Oxford University Press, London, 1980).

    Google Scholar 

  • 92.

    Meisterfeld, R. in The Illustrated Guide to the Protozoa (eds Lee, J. J., Leedale, G. F. & Bradbury, P.) 827–860 (Allen Press, Lawrence, 2001).

  • 93.

    Meisterfeld, R. in The Illustrated Guide to the Protozoa (eds Lee, J. J., Leedale, G. F. & Bradbury, P.) 1054–1084 (Allen Press, Lawrence, 2001).

  • 94.

    Siemensma, F. J. Microworld, world of amoeboid organisms. World-wide electronic publication (www.arcella.nl) (Kortenhoef, The Netherlands, 2019).

  • 95.

    Juggins, S. C2 User guide. Software for ecological and palaeoecological data analysis and visualisation (University of Newcastle, Newcastle upon Tyne, UK, 2003).

  • 96.

    Grimm, E. C. TILIA/TILIA graph. Version 1.2. (1992).

  • 97.

    MacAskill, M. R. DataGraph 3.0. J. Stat. Softw. 47, 1–9 (2012).

    Google Scholar 

  • 98.

    Lara, E., Roussel-Delif, L., Fournier, B., Wilkinson, D. M. & Mitchell, E. A. D. Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr. 43, 520–532 (2016).

    Google Scholar 

  • 99.

    Singer, D., Kosakyan, A., Pillonel, A., Mitchell, E. A. D. & Lara, E. Eight species in the Nebela collaris complex: Nebela gimlii (Arcellinida, Hyalospheniidae), a new species described from a Swiss raised bog. Eur. J. Protistol. 51, 79–85 (2015).

    Google Scholar 

  • 100.

    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  • 101.

    Team R Development Core. R: A language and environment for statistical computing. (2015).


  • Source: Ecology - nature.com

    Powering through the coming energy transition

    Massive, swift federal investment needed to address climate change, panelists say