in

Integration of palaeo-and-modern food webs reveal slow changes in a river floodplain wetland ecosystem

  • 1.

    Herwig, B. R., Wahl, D. H., Dettmers, J. M. & Soluk, D. A. Spatial and temporal patterns in the food web structure of a large floodplain river assessed using stable isotopes. Can. J. Fish. Aquat. Sci. 64, 495–508. https://doi.org/10.1139/f07-023 (2007).

    CAS  Article  Google Scholar 

  • 2.

    Turner, B. L. I. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 100, 8074–8079. https://doi.org/10.1073/pnas.1231335100 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Sayer, C. D., Davidson, T. A., Jones, J. I. & Langdon, P. G. Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw. Biol. 55, 487–499. https://doi.org/10.1111/j.1365-2427.2010.02388.x (2010).

    Article  Google Scholar 

  • 4.

    Randsalu-Wendrup, L. et al. Combining limnology and palaeolimnology to investigate recent regime shifts in a shallow, eutrophic lake. J. Paleolimnol. 51, 437–448. https://doi.org/10.1007/s10933-014-9767-5 (2014).

    ADS  Article  Google Scholar 

  • 5.

    Kattel, G. R., Dong, X. & Yang, X. A century-scale, human-induced ecohydrological evolution of wetlands of two large river basins in Australia (Murray) and China (Yangtze). Hydrol. Earth Syst. Sci. 20, 2151–2168. https://doi.org/10.5194/hess-20-2151-2016 (2016).

    ADS  Article  Google Scholar 

  • 6.

    Kingsford, R. T. & Thomas, R. F. Destruction of wetlands and waterbird populations by dams and irrigation on the Murrumbidgee River in arid Australia. Environ. Manage. 34, 383–396. https://doi.org/10.1007/s00267-004-0250-3 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 7.

    Gell, P. A. & Reid, M. A. Muddied waters: The case for mitigating sediment and nutrient flux to optimize restoration response in the Murray-Darling Basin, Australia. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2016.00016 (2016).

    Article  Google Scholar 

  • 8.

    Davis, J. et al. When trends intersect: The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci. Total Environ. 534, 65–78. https://doi.org/10.1016/j.scitotenv.2015.03.127 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 9.

    Davis, J. A. & Froend, R. Loss and degradation of wetlands in southwestern Australia: Underlying causes, consequences and solutions. Wetlands Ecol. Manage. 7, 13–23 (1999).

    Article  Google Scholar 

  • 10.

    Wright, I. A., Chessman, B. C., Eairweather, P. G. & Benson, L. J. Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: The effect of different levels of taxonomic resolution and quantification. Aust. J. 20, 142–149 (1995).

    Google Scholar 

  • 11.

    Wright, I. A., Belmer, N. & Davies, P. J. Coal mine water pollution and ecological impairment of one of Australia’s most ‘protected’ high conservation-value rivers. Water Air Soil Pollut. https://doi.org/10.1007/s11270-017-3278-8 (2017).

    Article  Google Scholar 

  • 12.

    Forsberg, B. R., Melack, J. M., Richey, J. E. & Pimentel, T. P. Regional and seasonal variability in planktonic photosynthesis and planktonic community respiration in Amazon floodplain lakes. Hydrobiologia 800, 187–206. https://doi.org/10.1007/s10750-017-3222-3 (2017).

    CAS  Article  Google Scholar 

  • 13.

    Kennard, M. J., Arthington, A. H., Pusey, B. J. & Harch, B. D. Are alien fish a reliable indicator of river health?. Freshw. Biol. 50, 174–193. https://doi.org/10.1111/j.1365-2427.2004.01293.x (2005).

    Article  Google Scholar 

  • 14.

    Froend, R. H. & Mccomb, A. J. Distribution, productivity and reproductive phenology of emergent macrophytes in relation to water regimes at wetlands of South-western Australia. Aust. J. Mar. Freshwater Res. 45, 1491–1508 (1994).

    Article  Google Scholar 

  • 15.

    Koehn, J. Carp (Cyprinus carpio) as a powerful invader. Freshw. Biol. 49, 882–894 (2004).

    Article  Google Scholar 

  • 16.

    Hardy, C. M., Krull, E. S., Hartley, D. M. & Oliver, R. L. Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Mol. Ecol. 19, 197–212. https://doi.org/10.1111/j.1365-294X.2009.04411.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Brett, M. T., Kainz, M. J., Taipale, S. J. & Seshan, H. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad. Sci. USA 106, 21197–21201. https://doi.org/10.1073/pnas.0904129106 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 18.

    Mendonca, R. et al. Bimodality in stable isotope composition facilitates the tracing of carbon transfer from macrophytes to higher trophic levels. Hydrobiologia 710, 205–218. https://doi.org/10.1007/s10750-012-1366-8 (2013).

    CAS  Article  Google Scholar 

  • 19.

    Doody, T. M. et al. Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray-Darling Basin, Australia—Implications for the management of environmental flows. Ecohydrology 8, 1471–1487. https://doi.org/10.1002/eco.1598 (2015).

    Article  Google Scholar 

  • 20.

    Jenkins, K. M. & Boulton, A. J. Detecting impacts and setting restoration targets in arid-zone rivers: Aquatic micro-invertebrate responses to reduced floodplain inundation. J. Appl. Ecol. 44, 823–832. https://doi.org/10.1111/j.1365-2664.2007.01298.x (2007).

    Article  Google Scholar 

  • 21.

    Reid, M. A. & Ogden, R. W. Factors affecting diatom distribution in floodplain lakes of the southeast Murray Basin, Australia and implications for palaeolimnological studies. J. Paleolimnol. 41, 453–470. https://doi.org/10.1007/s10933-008-9236-0 (2008).

    Article  Google Scholar 

  • 22.

    Rawcliffe, R. et al. Back to the future: Using palaeolimnology to infer long-term changes in shallow lake food webs. Freshw. Biol. 55, 600–613. https://doi.org/10.1111/j.1365-2427.2009.02280.x (2010).

    Article  Google Scholar 

  • 23.

    Carpenter, S., Walker, B., Anderies, J. M. & Abel, N. From metaphor to measurement: Resilience of what to what?. Ecosystems 4, 765–781. https://doi.org/10.1007/s10021-001-0045-9 (2014).

    Article  Google Scholar 

  • 24.

    Randsalu-Wendrup, L., Conley, D. J., Carstensen, J. & Fritz, S. C. Paleolimnological records of regime shifts in lakes in response to climate change and anthropogenic activities. J. Paleolimnol. https://doi.org/10.1007/s10933-016-9884-4 (2016).

    Article  Google Scholar 

  • 25.

    Jones, J. I. & Waldron, S. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshw. Biol. 48, 1396–1407 (2003).

    Article  Google Scholar 

  • 26.

    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182. https://doi.org/10.1371/journal.pone.0116182 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Mao, Z., Gu, X., Zeng, Q., Zhou, L. & Sun, M. Food web structure of a shallow eutrophic lake (Lake Taihu, China) assessed by stable isotope analysis. Hydrobiologia 683, 173–183. https://doi.org/10.1007/s10750-011-0954-3 (2011).

    CAS  Article  Google Scholar 

  • 28.

    Burford, M. A., Cook, A. J., Fellows, C. S., Balcombe, S. R. & Bunn, S. E. Sources of carbon fuelling production in an arid floodplain river. Mar. Freshw. Res. 59, 224–234 (2008).

    CAS  Article  Google Scholar 

  • 29.

    Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352. https://doi.org/10.1644/11-mamm-s-158.1 (2012).

    Article  Google Scholar 

  • 30.

    Ventura, M. et al. Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes. Freshw. Biol. 53, 1434–1452. https://doi.org/10.1111/j.1365-2427.2008.01975.x (2008).

    CAS  Article  Google Scholar 

  • 31.

    Torres, I. C., Inglett, P. W., Brenner, M., Kenney, W. F. & Reddy, K. R. Stable isotope (δ13C and δ15N) values of sediment organic matter in subtropical lakes of different trophic status. J. Paleolimnol. 47, 693–706. https://doi.org/10.1007/s10933-012-9593-6 (2012).

    ADS  Article  Google Scholar 

  • 32.

    Kattel, G. et al. Tracking a century of change in trophic structure and dynamics in a floodplain wetland: Integrating palaeoecological and palaeoisotopic evidence. Freshw. Biol. 60, 711–723. https://doi.org/10.1111/fwb.12521 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Kattel, G., Gell, P., Zawadzki, A. & Barry, L. Palaeoecological evidence for sustained change in a shallow Murray River (Australia) floodplain lake: Regime shift or press response?. Hydrobiologia 787, 269–290. https://doi.org/10.1007/s10750-016-2970-9 (2016).

    CAS  Article  Google Scholar 

  • 34.

    Gippel, C. J. & Blackham, D. Review of environmental impacts of flow regulation and other water resource developments in the river murray and lower darling river system. Final report by Fluvial Systems Pty Ltd, Stockton, to Murray-Darling Basin Commission, Canberra, ACT (2002).

  • 35.

    Lloyd, L. N. Kings Billabong operating plan. Report to the Mallee CMA. Lloyd Environmental, Syndal, Victoria. Final Draft 22 March 2012 (2012).

  • 36.

    Battarbee, R. W. Palaeolimnological approaches to climate change, with special regard to the biological record. Quatern. Sci. Rev. 19, 107–124 (2004).

    ADS  Article  Google Scholar 

  • 37.

    Shiel, R. J. & Dickson, A. Cladocera recorded from Australia. T. Roy. Soc. South Aust. 119, 29–40 (1995).

    Google Scholar 

  • 38.

    Szeroczyńska, K. & Sarmaja-Korjonen, K. Atlas of subfossil Cladocera from Central and Northern Europe (Friends of the Lower Vistula Society, Poland, 2007).

    Google Scholar 

  • 39.

    Grimm, E. C. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35. https://doi.org/10.1016/0098-3004(87)90022-7 (1987).

    ADS  Article  Google Scholar 

  • 40.

    Schilder, J. et al. The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water. Biogeosciences 12, 3819–3830. https://doi.org/10.5194/bg-12-3819-2015 (2015).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Morlock, M. A. et al. Seasonality of cladoceran and bryozoan resting stage δ13C values and implications for their use as palaeolimnological indicators of lacustrine carbon cycle dynamics. J. Paleolimnol. 57, 141–156. https://doi.org/10.1007/s10933-016-9936-9 (2016).

    Article  Google Scholar 

  • 42.

    Kattel, G. R., Battarbee, R. W., Mackay, A. W. & Birks, H. J. B. Recent ecological change in a remote Scottish mountain loch: An evaluation of a Cladocera-based temperature transfer-function. Palaeogeogr. Palaeoclimatol. Palaeoecol. 259, 51–76. https://doi.org/10.1016/j.palaeo.2007.03.052 (2008).

    Article  Google Scholar 

  • 43.

    Vandekerkhove, J. et al. Use of ephippial morphology to assess richness of anomopods: Potentials and pitfalls. J. Limnol. 63(Suppl), 75–80 (2004).

    Article  Google Scholar 

  • 44.

    Haines, E. B. & Montague, C. L. Food sources of estuarine invertebrates analyzed using 13C/12C ratios. Ecology 60, 48–56 (1979).

    Article  Google Scholar 

  • 45.

    Appleby, P. G. Chronostratigraphic Techniques in Recent Sediments 171–203 (Kluwer Academic Publishers, Dordrecht, 2001).

    Google Scholar 

  • 46.

    Blaauw, M. & Hegaard, E. Estimation of age-depth relationships. In Tracking Environmental Change Using Lake Sediments (eds Birks, H. J. B., Juggins, S., Lotter, A. & Smol, J. P.) 379–413 (Springer, Dordrecht, 2012).

    Google Scholar 

  • 47.

    Oakes, J. M., Rysgaard, S., Glud, R. N. & Eyre, B. D. The transformation and fate of sub-Arctic microphytobenthos carbon revealed through 13 C-labeling. Limnol. Oceanogr. 61, 2296–2308. https://doi.org/10.1002/lno.10377 (2016).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Eyre, B. D., Oakes, J. M. & Middelburg, J. J. Fate of microphytobenthos nitrogen in subtropical subtidal sediments: A 15 N pulse-chase study. Limnol. Oceanogr. 61, 2108–2121. https://doi.org/10.1002/lno.10356 (2016).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Le Clercq, M., van der Plicht, J. & Groning, M. In Proceedings of the 16th International 14C Conference, Radiocarbon. (eds W.G. Mook & J. van der Plicht) 295–297.

  • 50.

    Böhlke, J. K. & Coplen, T. B. Reference and Inter-Comparison Materials for Stable Isotopes of Light Elements. Proceedings of a Consultants Meeting Held in Vienna 1–3 December 1993 (IAEA, Vienna, 1995).

    Google Scholar 

  • 51.

    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136, 261–269. https://doi.org/10.1007/s00442-003-1218-3 (2003).

    ADS  Article  PubMed  Google Scholar 

  • 52.

    Fry, B. Stable isotope diagrams of freshwater food webs. Ecology 72, 2293–2297 (1991).

    Article  Google Scholar 

  • 53.

    Fry, B. & Sherr, E. B. PC measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27, 13–47 (1984).

    CAS  Google Scholar 

  • 54.

    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).

    CAS  Article  Google Scholar 

  • 55.

    Minagawa, M., Winter, D. A. & Kaplan, I. R. Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Anal. Chem. 56, 1859–1861. https://doi.org/10.1021/ac00275a023 (2002).

    Article  Google Scholar 

  • 56.

    Roberts, J. & Kleinert, H. Managing Typha and Phragmites, Report for workshop held 16th June 2014, North Central Catchment Management Authority, Australia. (2015).

  • 57.

    CarpFactsheet. Pest Smart. https://pestsmart.org.au/pestsmart-factsheet-carp/ (2017).

  • 58.

    Minagawa, M., Winter, D. A. & Kaplan, I. R. Comparison of Kjeldahl and combustion methods for measurement of nitrogen isotope ratios in organic matter. Anal. Chem. 56(11), 1859–1861. https://doi.org/10.1021/ac00275a023 (1984).

    CAS  Article  Google Scholar 

  • 59.

    Powell, S. J., Letcher, R. A. & Croke, B. F. W. Modelling floodplain inundation for environmental flows: Gwydir wetlands, Australia. Ecol. Model. 211, 350–362. https://doi.org/10.1016/j.ecolmodel.2007.09.013 (2008).

    Article  Google Scholar 

  • 60.

    Chiew, F., Young, W. J. & Cai, W. Current drought and future hydroclimate projections in southeast Australia and implications for water resources management. Stoch. Environ. Res. Risk Assess. 25, 601–612. https://doi.org/10.1007/s00477-010-0424-x (2011).

    Article  Google Scholar 

  • 61.

    Powell, J. M. Watering the Garden State. (Allen & Unwin, 1989).

  • 62.

    Jeppesen, E., Leavitt, P. R., De Meester, L. & Jensen, J. P. Functional ecology and palaeolimnology: Using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol. Evol. 16, 191–198 (2001).

    CAS  Article  Google Scholar 

  • 63.

    Dadswell, M. (Bureau of Immigration and Population Research, Canberra, 1980). http://www.dadswell.id.au/history/tree10/italian_essay.pdf.

  • 64.

    Scheffer, M. & Jeppesen, E. Regime shifts in shallow lakes. Ecosystems 10, 1–3. https://doi.org/10.1007/s10021-006-9002-y (2007).

    Article  Google Scholar 

  • 65.

    Meyers, P. A. & Teranes, J. L. Sediment organic matter. In Tracking Environmental Changes Using Lake Sediments, Physical and Chemical Techniques Vol. II (eds Last, W. M. & Smol, J. P.) 239–269 (Kluwer, 2001).

  • 66.

    Xu, D. et al. Variations of food web structure and energy availability of shallow lake with long-term eutrophication: A case study from Lake Taihu, China. Clean: Soil, Air, Water 44, 1306–1314. https://doi.org/10.1002/clen.201300837 (2016).

    CAS  Article  Google Scholar 

  • 67.

    Kong, X. et al. Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s. Ecol. Model. 319, 31–41. https://doi.org/10.1016/j.ecolmodel.2015.06.045 (2016).

    CAS  Article  Google Scholar 

  • 68.

    Cole, J. J. et al. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc. Natl. Acad. Sci. USA 108, 1975–1980. https://doi.org/10.1073/pnas.1012807108 (2011).

    ADS  Article  PubMed  Google Scholar 

  • 69.

    Rosenblatt, A. E. & Schmitz, O. J. Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol. Evol. 31, 965–975. https://doi.org/10.1016/j.tree.2016.09.009 (2016).

    Article  PubMed  Google Scholar 

  • 70.

    Kosten, S. et al. Effects of submerged vegetation on water clarity across climates. Ecosystems 12, 1117–1129. https://doi.org/10.1007/s10021-009-9277-x (2009).

    Article  Google Scholar 

  • 71.

    Masson, S., Angeli, N., Guillard, J. & Pinel-Alloul, B. Diel vertical and horizontal distribution of crustacean zooplankton and young of the year fish in a sub-alpine lake: An approach based on high frequency sampling. J. Plankton Res. 23, 1041–1060 (2001).

    Article  Google Scholar 

  • 72.

    Burks, R. L., Lodge, D. M., Jeppesen, E. & Lauridsen, T. L. Diel horizontal migration of zooplankton: Costs and benefits of inhabiting the littoral. Freshw. Biol. 47, 343–365 (2002).

    Article  Google Scholar 

  • 73.

    Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509. https://doi.org/10.1038/nature08179 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 74.

    Cloern, J. E., Canuel, E. A. & Harris, D. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnol. Oceanogr. 47, 713–729 (2002).

    ADS  CAS  Article  Google Scholar 

  • 75.

    Robertson, A. I., Bunn, S. E., Boon, P. I. & Walker, K. F. Sources, sinks and transformations of organic carbon in Australian floodplain rivers. Mar. Freshw. Res. 50, 1393–1398 (1999).

    Article  Google Scholar 

  • 76.

    Adis, J. & Victoria, R. L. C3 or C4 macrophytes: a specific carbon source for the development of semi-aquatic and terrestrial arthropods in central Amazonian river-floodplains according to delta13C values. Isotopes Environ. Health Stud. 37, 193–198. https://doi.org/10.1080/10256010108033295 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 77.

    Johnson, B. J. et al. Carbon isotope evidence for an abrupt reduction in grasses coincident with European settlement of Lake Eyre, South Australia. Holocene 15, 888–896. https://doi.org/10.1191/0959683605hl861ra (2005).

    ADS  Article  Google Scholar 

  • 78.

    Wang, J., Gu, B., Ewe, S. M. L., Wang, Y. & Li, Y. Stable isotope compositions of aquatic flora as indicators of wetland eutrophication. Ecol. Eng. 83, 13–18. https://doi.org/10.1016/j.ecoleng.2015.06.007 (2015).

    Article  Google Scholar 

  • 79.

    Persson, A. et al. Effects of enrichment on simple aquatic food webs. Am. Nat. 157, 669–674 (2001).

    Article  Google Scholar 

  • 80.

    Gell, P. et al. Accessing limnological change and variability using fossil diatom assemblages, south-east Australia. River Res. Appl. 21, 257–269. https://doi.org/10.1002/rra.845 (2005).

    Article  Google Scholar 

  • 81.

    Gell, P. & Reid, M. Assessing change in floodplain wetland condition in the Murray Darling Basin, Australia. Anthropocene 8, 39–45. https://doi.org/10.1016/j.ancene.2014.12.002 (2014).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Peering into peer review

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia