in

Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields

[adace-ad id="91168"]
  • 1.

    Weibull, A. C., Östman, Ö & Granqvist, Å. Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodivers. Conserv. 12, 1335–1355 (2003).

    Google Scholar 

  • 2.

    Gurr, G. M. et al. Landscape ecology and expanding range of biocontrol agent taxa enhance prospects for diamondback moth management. A review. Agron. Sustain. Dev. 38, 23 (2018).

    Google Scholar 

  • 3.

    Schweiger, O. et al. Quantifying the impact of environmental factors on arthropod communities in agricultural landscapes across organizational levels and spatial scales. J. Appl. Ecol. 42, 1129–1139 (2005).

    Google Scholar 

  • 4.

    Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).

    CAS  Google Scholar 

  • 5.

    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).

    CAS  Google Scholar 

  • 6.

    Řezáč, M., Pekár, S. & Stará, J. The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. Biocontrol 55, 503–510 (2010).

    Google Scholar 

  • 7.

    Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Magrach, A. et al. Plant-pollinator networks in semi-natural grasslands are resistant to the loss of pollinators during blooming of mass-flowering crops. Ecography 41, 62–74 (2018).

    Google Scholar 

  • 9.

    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).

    Google Scholar 

  • 10.

    Rundlöf, M., Bengtsson, J. & Smith, H. G. Local and landscape effects of organic farming on butterfly species richness and abundance. J. Appl. Ecol. 45, 813–820 (2008).

    Google Scholar 

  • 11.

    Gabriel, D. et al. Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol. Lett. 13, 858–869 (2010).

    PubMed  Google Scholar 

  • 12.

    Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).

    PubMed  Google Scholar 

  • 13.

    Tscharntke, T. et al. The landscape context of trophic interactions: insect spillover across the crop-noncrop interface. Ann. Zool. Fenn. 42, 421–432 (2005).

    Google Scholar 

  • 14.

    Madeira, F. et al. Spillover of arthropods from cropland to protected calcareous grassland—the neighbouring habitat matters. Agric. Ecosyst. Environ. 235, 127–133 (2016).

    Google Scholar 

  • 15.

    Schmidt, M. H., Roschewitz, I., Thies, C. & Tscharntke, T. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 42, 281–287 (2005).

    Google Scholar 

  • 16.

    Pfiffner, L. & Luka, H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78, 215–222 (2000).

    Google Scholar 

  • 17.

    Saqib, H. S. A., You, M. & Gurr, G. M. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops. PeerJ 5, e3795 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Woodcock, B. A. et al. Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agric. Ecosyst. Environ. 139, 181–186 (2010).

    MathSciNet  Google Scholar 

  • 19.

    Perović, D. J., Gurr, G. M., Raman, A. & Nicol, H. I. Effect of landscape composition and arrangement on biological control agents in a simplified agricultural system: a cost-distance approach. Biol. Control 52, 263–270 (2010).

    Google Scholar 

  • 20.

    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115, 7863–7870 (2018).

    Google Scholar 

  • 21.

    Riechert, S. E. & Lockley, T. Spiders as biological control agents. Annu. Rev. Entomol. 29, 299–320 (1984).

    Google Scholar 

  • 22.

    Birkhofer, K. et al. Cursorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 98, 249–255 (2008).

    CAS  PubMed  Google Scholar 

  • 23.

    Mansour, F., Rosen, D., Shulov, A. & Plaut, H. N. Evaluation of spiders as biological control agents of Spodoptera littoralis larvae on apple in Israel. Acta Oecol. Oecol. Appl. 1, 225–232 (1980).

    Google Scholar 

  • 24.

    Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).

    PubMed  Google Scholar 

  • 25.

    Horváth, R. et al. In stable, unmanaged grasslands local factors are more important than landscape-level factors in shaping spider assemblages. Agric. Ecosyst. Environ. 208, 106–113 (2015).

    Google Scholar 

  • 26.

    Batáry, P., Báldi, A., Samu, F., Szuts, T. & Erdos, S. Are spiders reacting to local or landscape scale effects in Hungarian pastures?. Biol. Conserv. 141, 2062–2070 (2008).

    Google Scholar 

  • 27.

    Picchi, M. S., Gionata Bocci, F. F., Petacchi, R. & Entling, M. H. Effects of local and landscape factors on spiders and olive fruit flies. Agric. Ecosyst. Environ. 222, 138–147 (2016).

    Google Scholar 

  • 28.

    Djoudi, E. A. et al. Farming system and landscape characteristics differentially affect two dominant taxa of predatory arthropods. Agric. Ecosyst. Environ. 259, 98–110 (2018).

    Google Scholar 

  • 29.

    Muneret, L., Thiéry, D., Joubard, B. & Rusch, A. Deployment of organic farming at a landscape scale maintains low pest infestation and high crop productivity levels in vineyards. J. Appl. Ecol. 55, 1516–1525 (2018).

    Google Scholar 

  • 30.

    Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).

    Google Scholar 

  • 31.

    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).

    CAS  PubMed  Google Scholar 

  • 32.

    Hurd, L. E. & Fagan, W. F. Cursorial spiders and succession: age or habitat structure?. Oecologia 92, 215–221 (1992).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Halaj, J., Ross, D. W. & Moldenke, A. R. Importance of habitat structure to the arthropod food-web in Douglas-fir canopies. Oikos 90, 139–152 (2000).

    Google Scholar 

  • 34.

    Rypstra, A. A. L., Carter, P. P. E., Balfour, R. R. A. & Marshall, S. S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371–377 (1999).

    Google Scholar 

  • 35.

    Samu, F. & Szinetár, C. On the nature of agrobiont spiders. J. Arachnol. 30, 389–402 (2002).

    Google Scholar 

  • 36.

    Gangurde, S. Aboveground arthropod pest and predator diversity in irrigated rice (Oryza sativa L.) production systems of the Philippines. J. Trop. Agric. 45, 1–8 (2007).

    Google Scholar 

  • 37.

    Öberg, S. & Ekbom, B. Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Ann. Appl. Biol. 149, 203–211 (2006).

    Google Scholar 

  • 38.

    Öberg, S. Influence of landscape structure and farming practice on body condition and fecundity of wolf spiders. Basic Appl. Ecol. 10, 614–621 (2009).

    Google Scholar 

  • 39.

    Garratt, M. P. D., Senapathi, D., Coston, D. J., Mortimer, S. R. & Potts, S. G. The benefits of hedgerows for pollinators and natural enemies depends on hedge quality and landscape context. Agric. Ecosyst. Environ. 247, 363–370 (2017).

    Google Scholar 

  • 40.

    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Langellotto, G. A. & Denno, R. F. Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139, 1–10 (2004).

    ADS  PubMed  Google Scholar 

  • 42.

    Marshall, E. J. P. & Moonen, A. C. Field margins in northern Europe: their functions and interactions with agriculture. Agric. Ecosyst. Environ. 89, 5–21 (2002).

    Google Scholar 

  • 43.

    Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

    PubMed  Google Scholar 

  • 44.

    Schmidt, M. H., Thies, C., Nentwig, W. & Tscharntke, T. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J. Biogeogr. 35, 157–166 (2008).

    Google Scholar 

  • 45.

    Drapela, T., Moser, D., Zaller, J. G. & Frank, T. Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31, 254–262 (2008).

    Google Scholar 

  • 46.

    Zimmerer, K. S. The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proc. Natl. Acad. Sci. USA 110, 2769–2774 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Sørensen, L. L., Coddington, J. A. & Scharff, N. Inventorying and estimating subcanopy spider diversity using semiquantitative sampling methods in an Afromontane forest. Environ. Entomol. 31, 319–330 (2002).

    Google Scholar 

  • 49.

    Mader, V. et al. Land use at different spatial scales alters the functional role of web-building spiders in arthropod food webs. Agric. Ecosyst. Environ. 219, 152–162 (2016).

    Google Scholar 

  • 50.

    Hollander, M. & Wolfe, D. Nonparametric Statistical Methods. Wiley Series in Probability and Statistics 2nd edn. (Wiley, New York, 1999).

    Google Scholar 

  • 51.

    Oksanen, J. et al. Package “vegan”: Community Ecology Package (2019).

  • 52.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 53.

    Torondel, B. et al. Assessment of the influence of intrinsic environmental and geographical factors on the bacterial ecology of pit latrines. Microb. Biotechnol. 9, 209–223 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).

    ADS  PubMed  Google Scholar 

  • 55.

    Belsley, D. A., Kuh, E. & Welsch, R. E. Detecting and assessing collinearity. In Regression Diagnostic: Identifying Influential Data and Sources of Collnearity (eds Belsley, D. A. et al.) 85–191 (Wiley, New York, 2005).

    Google Scholar 

  • 56.

    Legendre, P., Oksanen, J. & ter Braak, C. J. F. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2, 269–277 (2011).

    Google Scholar 

  • 57.

    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).

    Google Scholar 

  • 58.

    Kindt, R. Package “BiodiversityR”: Package for Community Ecology and Suitability Analysis (2019).

  • 59.

    Warnes, G. R. et al. Package “gplots”: Various R Programming Tools for Plotting Data (2020).

  • 60.

    Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters (2020).


  • Source: Ecology - nature.com

    Effectiveness of protected areas in conserving tropical forest birds

    Did our early ancestors boil their food in hot springs?