in

Mining zebrafish microbiota reveals key community-level resistance against fish pathogen infection

[adace-ad id="91168"]
  • 1.

    Rolig AS, Parthasarathy R, Burns AR, Bohannan BJ, Guillemin K. Individual members of the microbiota disproportionately modulate host innate immune responses. Cell Host Microbe. 2015;18:613–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    McFall-Ngai MJ. Unseen forces: the influence of bacteria on animal development. Dev Biol. 2002;242:1–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    van der Waaij D, Berghuis-de Vries JM, Lekkerkerk-van der Wees JEC. Colonization resistance of the digestive tract and the spread of bacteria to the lymphatic organs in mice. J Hyg. 1972;70:335–42.

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des. 2009;15:1546–58.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Stecher B, Hardt WD. The role of microbiota in infectious disease. Trends Microbiol. 2008;16:107–14.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol. 2011;14:82–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Falcinelli S, Rodiles A, Unniappan S, Picchietti S, Gioacchini G, Merrifield DL, et al. Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci Rep. 2016;6:18061.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Olsan EE, Byndloss MX, Faber F, Rivera-Chavez F, Tsolis RM, Baumler AJ. Colonization resistance: The deconvolution of a complex trait. J Biol Chem. 2017;292:8577–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011;10:311–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Heselmans M, Reid G, Akkermans LM, Savelkoul H, Timmerman H, Rombouts FM. Gut flora in health and disease: potential role of probiotics. Curr Issues Intest Microbiol. 2005;6:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Boirivant M, Strober W. The mechanism of action of probiotics. Curr Opin Gastroenterol. 2007;23:679–92.

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Robinson CJ, Bohannan BJ, Young VB. From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev. 2010;74:453–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Vollaard EJ, Clasener HA. Colonization resistance. Antimicrob Agents Chemother. 1994;38:409–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Gill HS. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pr Res Clin Gastroenterol. 2003;17:755–73.

    CAS  Article  Google Scholar 

  • 15.

    Rawls JF, Samuel BS, Gordon JI. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA. 2004;101:4596–601.

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Milligan-Myhre K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF, Guillemin K, et al. Study of host-microbe interactions in zebrafish. Methods cell Biol. 2011;105:87–116.

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Burns AR, Guillemin K. The scales of the zebrafish: host-microbiota interactions from proteins to populations. Curr Opin Microbiol. 2017;38:137–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Douglas AE. Simple animal models for microbiome research. Nat Rev Microbiol. 2019;17:764–75.

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol. 2020;22:e13152.

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Melancon E, Gomez De La Torre Canny S, Sichel S, Kelly M, Wiles TJ, Rawls JF, et al. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods cell Biol. 2017;138:61–100.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Cantas L, Sorby JR, Alestrom P, Sorum H. Culturable gut microbiota diversity in zebrafish. Zebrafish. 2012;9:26–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Rendueles O, Ferrieres L, Fretaud M, Begaud E, Herbomel P, Levraud JP, et al. A new zebrafish model of oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS Pathog. 2012;8:e1002815.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Caruffo M, Navarrete NC, Salgado OA, Faundez NB, Gajardo MC, Feijoo CG, et al. Protective Yeasts Control V. anguillarum Pathogenicity and Modulate the Innate Immune Response of Challenged Zebrafish (Danio rerio) Larvae. Front Cell Infect Microbiol. 2016;6:127.

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Perez-Ramos A, Mohedano ML, Pardo MA, Lopez P. Beta-glucan-producing pediococcus parvulus 2.6: test of probiotic and immunomodulatory properties in zebrafish models. Front Microbiol. 2018;9:1684.

    PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Chu W, Zhou S, Zhu W, Zhuang X. Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Sci Rep. 2014;4:5446.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Wang Y, Ren Z, Fu L, Su X. Two highly adhesive lactic acid bacteria strains are protective in zebrafish infected with Aeromonas hydrophila by evocation of gut mucosal immunity. J Appl Microbiol. 2016;120:441–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Qin C, Zhang Z, Wang Y, Li S, Ran C, Hu J, et al. EPSP of L. casei BL23 Protected against the Infection Caused by Aeromonas veronii via Enhancement of Immune Response in Zebrafish. Front Microbiol. 2017;8:2406.

    PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Girija V, Malaikozhundan B, Vaseeharan B, Vijayakumar S, Gobi N, Del Valle Herrera M, et al. In vitro antagonistic activity and the protective effect of probiotic Bacillus licheniformis Dahb1 in zebrafish challenged with GFP tagged Vibrio parahaemolyticus Dahv2. Microb Pathogenesis. 2018;114:274–80.

    Article  Google Scholar 

  • 29.

    Lin YS, Saputra F, Chen YC, Hu SY. Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish Immunol. 2019;86:410–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A. Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res. 2013;44:27.

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Decostere A, Haesebrouck F, Devriese LA. Characterization of four Flavobacterium columnare (Flexibacter columnaris) strains isolated from tropical fish. Vet Microbiol. 1998;62:35–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Figueiredo HC, Klesius PH, Arias CR, Evans J, Shoemaker CA, Pereira DJ Jr, et al. Isolation and characterization of strains of Flavobacterium columnare from Brazil. J fish Dis. 2005;28:199–204.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Soto E, Mauel MJ, Karsi A, Lawrence ML. Genetic and virulence characterization of Flavobacterium columnare from channel catfish (Ictalurus punctatus). J Appl Microbiol. 2008;104:1302–10.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Suomalainen LR, Bandilla M, Valtonen ET. Immunostimulants in prevention of columnaris disease of rainbow trout, Oncorhynchus mykiss (Walbaum). J fish Dis. 2009;32:723–6.

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Pacha RE, Ordal EJ Myxobacterial infections of salmonids. American Fisheries Society, Diseases of Fishes and Shellfishes 1970:12.

  • 36.

    Amin NE, Abdallah IS, Faisal M, Easa Me-S, Alaway T, Alyan SA. Columnaris infection among cultured Nile tilapia Oreochromis niloticus. Antonie Van Leeuwenhoek. 1988;54:509–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Decostere A, Haesebrouck F, Charlier G, Ducatelle R. The association of Flavobacterium columnare strains of high and low virulence with gill tissue of black mollies (Poecilia sphenops). Vet Microbiol. 1999;67:287–98.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Bernardet J-F, Bowman JP. The genus flavobacterium. Prokaryotes. 2006;7:481–531.

    Article  Google Scholar 

  • 39.

    Li N, Zhu Y, LaFrentz BR, Evenhuis JP, Hunnicutt DW, Conrad RA, et al. The type IX secretion system is required for virulence of the fish pathogen flavobacterium columnare. Appl Environ Microbiol. 2017;83:e01769–17.

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Garcia JC, LaFrentz BR, Waldbieser GC, Wong FS, Chang SF. Characterization of atypical Flavobacterium columnare and identification of a new genomovar. J Fish Dis. 2018;41:1159–64.

    CAS  PubMed  Article  Google Scholar 

  • 41.

    van der Vaart M, van Soest JJ, Spaink HP, Meijer AH. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system. Dis Models Mech. 2013;6:841–54.

    Article  CAS  Google Scholar 

  • 42.

    Pham LN, Kanther M, Semova I, Rawls JF. Methods for generating and colonizing gnotobiotic zebrafish. Nat Protoc. 2008;3:1862–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med. 2012;4:137rv5.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma. 2014;30:2114–20.

    CAS  Article  Google Scholar 

  • 45.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, Ser B,57, 289-300.1995;57:289–300.

    Google Scholar 

  • 46.

    Ha SM, Kim CK, Roh J, Byun JH, Yang SJ, Choi SB, et al. Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Ann Lab Med. 2019;39:530–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Volant S, Lechat P, Woringer P, Motreff L, Campagne P, Malabat C, et al. SHAMAN: a user-friendly website for metataxonomic analysis from raw reads to statistical analysis. BMC Bioinforma. 2020;21:345.

    Article  Google Scholar 

  • 48.

    Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Olivares-Fuster O, Bullard SA, McElwain A, Llosa MJ, Arias CR. Adhesion dynamics of Flavobacterium columnare to channel catfish Ictalurus punctatus and zebrafish Danio rerio after immersion challenge. Dis Aquat Org. 2011;96:221–7.

    Article  Google Scholar 

  • 53.

    Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Natl Acad Sci USA. 2011;108:4570–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016;10:644–54.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 55.

    Mena KD, Gerba CP. Risk assessment of pseudomonas aeruginosa in water. Rev Environ contamination Toxicol. 2009;201:71–115.

    CAS  Google Scholar 

  • 56.

    Goncalves Pessoa RB, de Oliveira WF, Marques DSC, Dos Santos Correia MT, de Carvalho E, Coelho L. The genus Aeromonas: a general approach. Microb pathogenesis. 2019;130:81–94.

    CAS  Article  Google Scholar 

  • 57.

    Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ, Goo YA, et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe. 2014;16:227–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Chatzidaki-Livanis M, Coyne MJ, Comstock LE. An antimicrobial protein of the gut symbiont Bacteroides fragilis with a MACPF domain of host immune proteins. Mol Microbiol. 2014;94:1361–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Roelofs KG, Coyne MJ, Gentyala RR, Chatzidaki-Livanis M, Comstock LE. Bacteroidales secreted antimicrobial proteins target surface molecules necessary for gut colonization and mediate competition in vivo. mBio. 2016;7:e01055–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, et al. A gut commensal-produced metabolite mediates colonization resistance to salmonella infection. Cell host microbe. 2018;24:296–307.e7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Larsbrink J, McKee LS. Bacteroidetes bacteria in the soil: glycan acquisition, enzyme secretion, and gliding motility. Adv Appl Microbiol. 2020;110:63–98.

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Kamada N, Seo SU, Chen GY, Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13:321–35.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Ganz J, Melancon E, Eisen JS. Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract. Methods cell Biol. 2016;134:139–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol. 2006;297:374–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Yan Q, van der Gast CJ, Yu Y. Bacterial community assembly and turnover within the intestines of developing zebrafish. PLoS ONE. 2012;7:e30603.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Rogers GB, Hoffman LR, Carroll MP, Bruce KD. Interpreting infective microbiota: the importance of an ecological perspective. Trends Microbiol. 2013;21:271–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 2016;10:655–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Shafquat A, Joice R, Simmons SL, Huttenhower C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol. 2014;22:261–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Shade A, Peter H, Allison SD, Baho DL, Berga M, Burgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.

    PubMed  PubMed Central  Article  Google Scholar 

  • 72.

    Willing BP, Russell SL, Finlay BB. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol. 2011;9:233–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Brugman S, Liu KY, Lindenbergh-Kortleve D, Samsom JN, Furuta GT, Renshaw SA, et al. Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota. Gastroenterology. 2009;137:1757–67.e1.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Salonen A, Nikkila J, Jalanka-Tuovinen J, Immonen O, Rajilic-Stojanovic M, Kekkonen RA, et al. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods. 2010;81:127–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol. 2010;12:118–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 76.

    Shabgah AG, Navashenaq JG, Shabgah OG, Mohammadi H, Sahebkar A. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev. 2017;16:1209–18.

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal