in

Past perspectives on the present era of abrupt Arctic climate change

[adace-ad id="91168"]
  • 1.

    IPCC: Summary for Policymakers. In IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • 2.

    IPCC: Summary for Policymakers. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (WMO, 2019).

  • 3.

    Serreze, M. C. & Stroeve, J. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos. Trans. Roy. Soc. 373, 20140159 (2015).

    Google Scholar 

  • 4.

    Smith, D. M. et al. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geosci. Model Dev. 12, 1139–1164 (2019).

    Google Scholar 

  • 5.

    Bhatt, U. S. et al. Implications of Arctic sea ice decline for the Earth system. Annu. Rev. Environ. Resour. 39, 57–89 (2014).

    Google Scholar 

  • 6.

    Overland, J. E. et al. Nonlinear response of mid-latitude weather to the changing Arctic. Nat. Clim. Change 6, 992–999 (2016).

    Google Scholar 

  • 7.

    Pedersen, R., Cvijanovic, I., Langen, P. L. & Vinther, B. The impact of regional Arctic sea ice loss on atmospheric circulation and the NAO. J. Clim. 29, 889–902 (2015).

    Google Scholar 

  • 8.

    Lee, S., Gong, T., Feldstein, S. B., Screen, J. A. & Simmonds, I. Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett. 44, 10654–10661 (2017).

    Google Scholar 

  • 9.

    Screen, J. A. et al. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci. 11, 155–163 (2018).

    CAS  Google Scholar 

  • 10.

    Krishfield, R. A. et al. Deterioration of perennial sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic freshwater cycle. J. Geophys. Res. 119, 1271–1305 (2014).

    Google Scholar 

  • 11.

    Sévellec, F., Fedorov, A. V. & Liu, W. Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Clim. Change 7, 604–610 (2017).

    Google Scholar 

  • 12.

    Vihma, T. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys. 35, 1175–1214 (2014).

    Google Scholar 

  • 13.

    Screen, J. The missing Northern European winter cooling response to Arctic sea ice loss. Nat. Commun. 8, 14603 (2017).

    Google Scholar 

  • 14.

    Ogawa, F. et al. Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett. 45, 3255–3263 (2018).

    Google Scholar 

  • 15.

    Arrigo, K. R. & van Dijken, G. L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. 116, C09011 (2011).

    Google Scholar 

  • 16.

    Årthun, M. B. et al. Climate based multi-year predictions of the Barents Sea cod stock. PLoS ONE 13, e0206319 (2018).

    Google Scholar 

  • 17.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 137, 553–97 (2011).

    Google Scholar 

  • 18.

    Dansgaard, W. et al. A new Greenland deep ice core. Nature 218, 1273–1277 (1982). First paper describing indepth the record of abrupt changes in Greenland ice cores.

    CAS  Google Scholar 

  • 19.

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014). Provides a detailed chronology of Greenland ice cores and the D–O events, used for correlations globally.

    Google Scholar 

  • 20.

    Voelker, A. H. L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat. Sci. Rev. 21, 1185–1212 (2002).

    Google Scholar 

  • 21.

    Johnsen, S. J. et al. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313 (1992).

    Google Scholar 

  • 22.

    Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J. & Jouzel, J. Comparison of the oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    CAS  Google Scholar 

  • 23.

    North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Google Scholar 

  • 24.

    Genty, D. et al. Precise dating of Dansgaard–Oeschger climate oscillations in Western Europe from stalagmite data. Nature 421, 833–837 (2003).

    CAS  Google Scholar 

  • 25.

    Deplazes, G. et al. Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat. Geosci. 6, 213–217 (2013).

    CAS  Google Scholar 

  • 26.

    WAIS Divide Project Members. Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661–665 (2015).

    Google Scholar 

  • 27.

    Ganopolski, A. & Rahmstorf, S. Simulation of rapid glacial climate changes in a coupled climate model. Nature 409, 153–158 (2001).

    CAS  Google Scholar 

  • 28.

    Masson-Delmotte, V. et al. in Climate Change 2013: The PhysicalScience Basis (eds Stocker, T. F. et al.) Ch. 4 (IPCC, Cambridge Univ. Press, 2013).

  • 29.

    Gildor, H. & Tziperman, E. Sea-ice switches and abrupt climate change. Philos. T. Roy. Soc. A 36, 1935–1944 (2003). Key publication stating the potential role of sea-ice change to cause abrupt climate shifts.

    Google Scholar 

  • 30.

    Li, C., Battisti, D. S. & Bitz, C. M. Can North Atlantic sea ice anomalies account for Dansgaard‐Oeschger climate signals? J. Clim. 23, 5457–5475 (2010).

    Google Scholar 

  • 31.

    Dokken, T. M., Nisancioglu, K. H., Li, C., Battisti, D. S. & Kissel, C. Dansgaard-Oeschger cycles: interactions between ocean and sea ice intrinsic to the Nordic seas. Paleoceanography 28, 491–502 (2013). Key reference for conceptual model and empirical evidence on the interplay between sea-ice cover, ocean stratification changes and abrupt warming.

    Google Scholar 

  • 32.

    Vettoretti, G. & Peltier, W. R. Thermohaline instability and the formation of glacial North Atlantic super polynyas at the onset of Dansgaard‐Oeschger warming events. Geophys. Res. Lett. 43, 5336–5344 (2016).

    Google Scholar 

  • 33.

    Sadatzki, H. et al. Sea ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Sci. Adv. 5, eaau6174 (2019). Documenting at high temporal resolution the phasing of first sea-ice diminution and a subsequent abrupt warming.

    CAS  Google Scholar 

  • 34.

    Li, C. & Born, A. Coupled atmosphere-ice-ocean dynamics in Dansgaard-Oeschger events. Quat. Sci. Rev. 203, 1–20 (2019).

    Google Scholar 

  • 35.

    Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998).

    CAS  Google Scholar 

  • 36.

    Landais, A. et al. A continuous record of temperature evolution over a sequence of Dansgaard-Oeschger events during Marine Isotopic Stage 4 (76 to 62 kyr BP). Geophys. Res. Lett. 31, L22211 (2004).

    Google Scholar 

  • 37.

    Huber, C. et al. Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation toCH4. Earth Planet. Sc. Lett. 243, 504–519 (2006).

    CAS  Google Scholar 

  • 38.

    Kindler, P. et al. Temperature reconstruction from 10 to 120 kyr b2k from the NGRIP ice core. Clim Past 10, 887–902 (2014).

    Google Scholar 

  • 39.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Google Scholar 

  • 40.

    Meinshausen, M. S. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    CAS  Google Scholar 

  • 41.

    Seierstad, I. K. et al. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quat. Sci. Rev. 106, 29–46 (2014).

    Google Scholar 

  • 42.

    Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    Google Scholar 

  • 43.

    Steffensen, J. P. et al. High resolution Greenland ice core data show abruptclimate change happens in few years. Science 321, 680–684 (2008).

    CAS  Google Scholar 

  • 44.

    Erhardt, T. et al. Decadal-scale progression of the onset of Dansgaard–Oeschger warming events. Clim. Past 15, 811–825 (2019).

    Google Scholar 

  • 45.

    Bentsen, M. et al. The Norwegian Earth System Model, NorESM1-M – Part 1: description and basic evaluation of the physical climate. Geosci. Model Dev. 6, 687–720 (2013).

    Google Scholar 

  • 46.

    Guo, C. et al. Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 12, 343–362 (2019).

    CAS  Google Scholar 

  • 47.

    Guo, C., Nisancioglu, K. H., Bentsen, M., Bethke, I. & Zhang, Z. Equilibrium simulations of Marine Isotope Stage 3 climate. Clim. Past 15, 1133–1151 (2019).

    Google Scholar 

  • 48.

    Guo, C. NorESM1-F simulation of the Marine Isotope Stage 3 stadial-to-interstadial transition (Chuncheng Guo, NORCE, accessed 15 July 2020); https://doi.org/10.11582/2020.00006

  • 49.

    Jensen, M. F., Nilsson, J. & Nisancioglu, K. H. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea ice cover. Clim. Dynam. 47, 3301–3317 (2016).

    Google Scholar 

  • 50.

    Jensen, M. F., Nisancioglu, K. H. & Spall, M. A. Large changes in sea ice triggered by small changes in Atlantic water temperature. J. Clim. 31, 4847–4863 (2018). Model experiments that indicate high sensitivity of ocean stratification and its potential to create abrupt sea-ice loss.

    Google Scholar 

  • 51.

    Kaspi, Y., Sayag, R. & Tziperman, E. A “triple sea-ice state” mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography 19, PA3004 (2004).

    Google Scholar 

  • 52.

    Peltier, W. R. & Vettoretti, G. Dansgaard‐Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett. 41, 7306–7313 (2014).

    Google Scholar 

  • 53.

    Menviel, L., Timmermann, A., Friedrich, T. & England, M. H. Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing. Clim. Past 10, 63–77 (2014).

    Google Scholar 

  • 54.

    Vettoretti, G. & Peltier, W. R. Interhemispheric air temperature phase relationships in the nonlinear Dansgaard‐Oeschger oscillation. Geophys. Res. Lett. 42, 1180–1189 (2015).

    Google Scholar 

  • 55.

    Drijfhout, S., Gleeson, E., Dijkstra, H. A. & Livina, V. Spontaneous abrupt climate change. Proc. Natl Acad. Sci. USA 110, 19713–19718 (2013).

    CAS  Google Scholar 

  • 56.

    Kleppin, H., Jochum, M., Otto-Bliesner, B., Shields, C. A. & Yeager, S. Stochastic atmospheric forcing as a cause of Greenland climate transitions. J. Clim. 28, 7741–7763 (2015).

    Google Scholar 

  • 57.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. B. Am. Meteorol. Soc. 93, 485–498 (2011).

    Google Scholar 

  • 58.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  • 59.

    Flato, G. et al. In IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 60.

    Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004).

    Google Scholar 

  • 61.

    National Research Council. Abrupt Climate Change: Inevitable Surprises (National Academies Press, 2002).

  • 62.

    Pedersen, R. A. & Christensen, J. H. Attributing Greenland warming patterns to regional Arctic sea ice loss. Geophys. Res. Lett. 46, 10495–10503 (2019). Shows that central Greenland temperatures at present are not particularly sensitive to regional Arctic sea-ice loss and associated warming.

    Google Scholar 

  • 63.

    Sessford, E. G. et al. Consistent fluctuations in intermediate water temperature off the coast of Greenland and Norway during Dansgaard-Oeschger events. Quat. Sci. Rev. 223, 105887 (2019).

    Google Scholar 

  • 64.

    Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. 94, 14485–14498 (1989).

    Google Scholar 

  • 65.

    Aagaard, K., Coachman, L. K. & Carmack, E. On the halocline of the Arctic Ocean. Deep-Sea Res. 28A, 529–545 (1981).

    Google Scholar 

  • 66.

    Ilıcak, M. et al. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: hydrography and fluxes. Ocean Model. 100, 141–161 (2016). Shows that climate models have major shortcomings in their capability to simulate Arctic Ocean circulation.

    Google Scholar 

  • 67.

    Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018). Documents the ongoing ‘Atlantification’ of the Arctic north of Europe.

    Google Scholar 

  • 68.

    Årthun, M., Eldevik, T. & Smedsrud, L. H. The role of Atlantic heat transport in future Arctic winter sea ice loss. J. Clim. 32, 4121–4143 (2019).

    Google Scholar 

  • 69.

    Sessford, E. G. et al. High-resolution benthic Mg/Ca temperature record of the intermediate water in the Denmark strait across D-O stadial-interstadial cycles. Paleoceanogr. Paleocl. 33, 1169–1185 (2018).

    CAS  Google Scholar 

  • 70.

    ERA-Interim (European Centre for Medium-range Weather Forecast, accessed 9 February 2020); https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim

  • 71.

    GICC05modelext time scale for the NGRIP ice core (Sune Olander Rasmussen, NBI, accessed 15 July 2020); http://www.iceandclimate.nbi.ku.dk/data/2010-11-19_GICC05modelext_for_NGRIP.xls

  • 72.

    Coupled Model Intercomparison Project 5 (CMIP5) (US Department of Energy, Lawrence Livermore National Laboratory, accessed 15 July 2020); https://esgf-node.llnl.gov/projects/cmip5/

  • 73.

    Time series of annual TAS 40-year trend from historical to future in CMIP5 model simulations (Shuting Yang, DMI, accessed 17 July 2020); https://doi.org/10.5281/zenodo.3631549

  • 74.

    Time series of Area mean TAS 40-year trend from historical to future in CMIP5 model simulations (Shuting Yang, DMI, accessed 17 July 2020); https://doi.org/10.5281/zenodo.3631409

  • 75.

    Vinther, B. et al. Holocene thinning of the Greenland ice sheet. Nature 461, 385–388 (2009).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Colonization history affects heating rates of invasive cane toads

    $25 million gift launches ambitious new effort tackling poverty and climate change