Population genetic analysis in old Montenegrin vineyards reveals ancient ways currently active to generate diversity in Vitis vinifera

  • 1.

    Myles, S. et al. Genetic structure and domestication history of the grape. Proc. Nat. Acad. Sci. USA 108, 3457–3458 (2011).

    Google Scholar 

  • 2.

    This, P., Lacombe, T. & Thomas, M. R. Historical origins and genetic diversity of wine grapes. Trends Genet. 22, 511–519 (2006).

    CAS  PubMed  Google Scholar 

  • 3.

    Cvijić, J. The zones of civilization of the Balkan Peninsula. Geogr. Rev. 5, 470–482 (1918).

    Google Scholar 

  • 4.

    Ramos-Madrigal, J. et al. Palaeogenomic insights into the origins of French grapevine diversity. Nat. Plants 5, 595–603 (2019).

    PubMed  Google Scholar 

  • 5.

    Garnier, N. & Valamoti, S. M. Prehistoric wine-making at Dikili Tash (Northern Greece): integrating residue analysis and archaeobotany. J. Archaeol. Sci. 74, 195–206 (2016).

    CAS  Google Scholar 

  • 6.

    Štajner, N. et al. Microsatellite inferred genetic diversity and structure of Western Balkan grapevines (Vitis vinifera L.). Tree Genet. Genomes 10, 127–140 (2014).

    Google Scholar 

  • 7.

    Pilipovic, S. Wine and the vine in Upper Moesia. Archeological and epigraphic evidence. Balcanica 44, 21–34 (2013).

    Google Scholar 

  • 8.

    Marković, Č. Antićka Budva Nekropole Istraživanja 1980–1981 (Matica Crnogorska, Podgorica, 2012).

  • 9.

    Ljubić, S. Statuta et leges civitatis Buduae, civitatis Scardonae, et civitatis et insulae Lesinae. Opera prof. Simeonis Ljubić. (Officina Societatis Typographicae, Zagreb, 1882-3).

  • 10.

    Maraš, V. et al. Origin and characterization of Montenegrin grapevine varieties. Vitis 54, 135–137 (2015).

    Google Scholar 

  • 11.

    Tello, J., Mammerler, R., Cajic, M. & Forneck, A. Major outbreaks in the nineteenth century shaped grape phylloxera contemporary genetic structure in Europe. Sci. Rep. 9, 1–11 (2019).

    CAS  Google Scholar 

  • 12.

    Carka, F., Maul, E. & Sevo, R. Study and parentage analysis of old Albanian grapevine cultivars by ampelography and microsatellite markers. Vitis 54, 127–131 (2015).

    Google Scholar 

  • 13.

    Štajner, N., Angelova, E., Bozinovic, Z., Petkov, M. & Javornik, B. Microsatellite marker analysis of Macedonian grapevines (Vitis vinifera L.) compared to Bulgarian and Greek cultivars. J. Int. Sci. Vigne Vin. 43, 29–34 (2009).

    Google Scholar 

  • 14.

    Maraš, V., Bozovic, V., Giannetto, S. & Crespan, M. SSR molecular marker analysis of the grapevine germplasm of Montenegro. J. Int. Sci. Vigne Vin. 48, 87–97 (2014).

    Google Scholar 

  • 15.

    Maraš, V. Ampelographic and genetic characterization of Montenegrin grapevine varieties. In Advances in Grape and Wine Biotechnology, Ch. 4 (ed. Morata, A.) 239–245 (IntechOpen, London, 2019).

    Google Scholar 

  • 16.

    FAO. FAOSTAT. (2019).

  • 17.

    Pajović-Šćepanović, R., Wendelin, S. & Eder, R. Phenolic composition and varietal discrimination of Montenegrin red wines (Vitis vinifera var. Vranac, Kratošija, and Cabernet Sauvignon). Eur. Food Res. Technol. 12, 2243–2254 (2018).

    Google Scholar 

  • 18.

    Zulj-Mihaljevic, M. et al. Cultivar identity, intravarietal variation, and health status of native grapevine varieties in Croatia and Montenegro. Am. J. Enol. Vitic. 66, 531–541 (2015).

    Google Scholar 

  • 19.

    Wolkovich, E. M., García de Cortázar-Atauri, I., Morales-Castilla, I., Nicholas, K. A. & Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Change 8, 29–37 (2018).

    ADS  Google Scholar 

  • 20.

    Drori, E. et al. Collection and characterization of grapevine genetic resources (Vitis vinifera) in the Holy Land, towards the renewal of ancient winemaking practices. Sci. Rep. 7, 44463 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Beslic, Z. et al. Genetic characterization and relationships of traditional grape cultivars from Serbia. Vitis 51, 183–189 (2012).

    Google Scholar 

  • 22.

    Sladonja, B., Poljuha, D., Plavsa, T., Persuric, D. & Crespan, M. Autochthonous Croatian grapevine cultivar ‘Jarbola’—molecular, morphological and oenological characterization. Vitis 46, 99–100 (2007).

    Google Scholar 

  • 23.

    Štajner, N. et al. Genetic clustering and parentage analysis of Western Balkan grapevines (Vitis vinifera L.). Vitis 54, 67–72 (2015).

    Google Scholar 

  • 24.

    Boccacci, P., Torello-Marinoni, D., Gambino, G., Botta, R. & Schneider, A. Genetic characterization of endangered grape cultivars of Reggio Emilia province. Am. J. Enol. Vitic. 56, 411–416 (2005).

    CAS  Google Scholar 

  • 25.

    Vouillamoz, J. F. et al. Genetic characterization and relationships of traditional grape cultivars from Transcaucasia and Anatolia. Plant Gen. Resour. 4, 144–158 (2007).

    Google Scholar 

  • 26.

    De Lorenzis, G. et al. SNP genotyping elucidates the genetic diversity of Magna Graecia grapevine germplasm and its historical origin and dissemination. BMC Plant Biol. 19, 7 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Sefc, K. M., Regner, F., Turetschek, E., Glössl, J. & Steinkellner, H. Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42, 367–373 (1999).

    CAS  PubMed  Google Scholar 

  • 28.

    This, P. et al. Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109, 1448–1458 (2004).

    CAS  PubMed  Google Scholar 

  • 29.

    Cabezas, J. A. et al. A 48 SNP set for grapevine cultivar identification. BMC Plant Biol. 11, 153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Vélez, M. D. & Ibáñez, J. Assessment of the uniformity and stability of grapevine cultivars using a set of microsatellite markers. Euphytica 184, 419–432 (2012).

    Google Scholar 

  • 31.

    Ibáñez, J., Vélez, M., de Andrés, M. T. & Borrego, J. Molecular markers for establishing distinctness in vegetatively propagated crops: a case study in grapevine. Theor. Appl. Genet. 119, 1213–1222 (2009).

    PubMed  Google Scholar 

  • 32.

    Calò, A., Costacurta, A., Maraš, V., Meneghetti, S. & Crespan, M. Molecular correlation of Zinfandel (Primitivo) with Austrian, Croatian, and Hungarian cultivars and Kratošija, an additional synonym. Am. J. Enol. Vitic. 59, 205–209 (2008).

    Google Scholar 

  • 33.

    Cipriani, G. et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor. Appl. Genet. 121(8), 1569–1585 (2010).

    PubMed  Google Scholar 

  • 34.

    Emanuelli, F. et al. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol. 13, 1–17 (2013).

    Google Scholar 

  • 35.

    Bacilieri, R. et al. Genetic structure in cultivated grapevine is linked to geography and human selection. BMC Plant Biol. 13, 25 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Arroyo-García, R. et al. Chloroplast microsatellite polymorphisms in Vitis species. Genome 45, 1142–1149 (2002).

    PubMed  Google Scholar 

  • 37.

    Arroyo-García, R. et al. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp sativa) based on chloroplast DNA polymorphisms. Mol. Ecol. 15, 3707–3714 (2006).

    PubMed  Google Scholar 

  • 38.

    Cunha, J. et al. Genetic relationships among Portugueses cultivated and wild Vitis vinifera L. germplasm. Front Plant Sci. 11, 127 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Maul, E. et al. The European Vitis Database ( a technical innovation through an online uploading and interactive modification system. Vitis 51, 79–85 (2012).

    Google Scholar 

  • 40.

    Maul, E. & Töpfer R. Vitis international variety catalogue: Accessed February 2020 (2020).

  • 41.

    D’Onofrio, C. Introgression among cultivated and wild grapevine in Tuscany. Front Plant Sci 11, 202 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Lacombe, T. et al. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 126, 401–414 (2013).

    PubMed  Google Scholar 

  • 43.

    Tomic, L., Stajner, N., Jovanovic-Cvetkovic, T., Cvetkovic, M. & Javornik, B. Identity and genetic relatedness of Bosnia and Herzegovina grapevine germplasm. Sci. Hort. 143, 122–126 (2012).

    CAS  Google Scholar 

  • 44.

    Bowers, J. E. et al. Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of northeastern France. Science 285, 1562–1565 (1999).

    CAS  PubMed  Google Scholar 

  • 45.

    Bowers, J. E. & Meredith, C. P. The parentage of a classic wine grape Cabernet Sauvignon. Nat. Genet. 16, 84–87 (1997).

    CAS  PubMed  Google Scholar 

  • 46.

    Cunha, J. et al. Grapevine cultivar “Alfrocheiro” or “Bruñal” plays a primary role in the relationship among Iberian grapevines. Vitis 54, 59–65 (2015).

    Google Scholar 

  • 47.

    Zinelabidine, L. H. et al. Pedigree analysis of the Spanish grapevine cultivar ‘Heben’. Vitis 54, 81–86 (2015).

    Google Scholar 

  • 48.

    Crespan, M. et al. ‘Sangiovese’ and ‘Garganega’ are two key varieties of the Italian grapevine assortment evolution. Vitis 47, 97–104 (2008).

    Google Scholar 

  • 49.

    Bowers, J. E., Bandman, E. B. & Meredith, C. P. DNA fingerprint characterization of some wine grape cultivars. Am. J. Enol. Vitic. 44, 266–274 (1993).

    CAS  Google Scholar 

  • 50.

    Maletic, E. et al. Zinfandel, Dobricic, and Plavac mali: the genetic relationship among three cultivars of the Dalmatian Coast of Croatia. Am. J. Enol. Vitic. 55, 174–180 (2004).

    CAS  Google Scholar 

  • 51.

    Scienza, A. & Imazio, S. La stirpe del vino (Sperling & Kupfer, Milan, 2018).

    Google Scholar 

  • 52.

    Viala, P. & Vermorel, V. Tome VII. In: Traité général de viticulture: Ampelographie (ed Masson et Cie) (Librairies de L’Acadêmie de Médecine, 1909).

  • 53.

    Miller, A. J. & Gross, B. L. From forest to field: perennial fruit crop domestication. Am. J. Bot. 98, 1389–1414 (2011).

    PubMed  Google Scholar 

  • 54.

    Riaz, S. et al. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol. 18, 137 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Grassi, F. et al. Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor. Appl. Genet. 107, 1315–1320 (2003).

    CAS  PubMed  Google Scholar 

  • 56.

    Zhou, Y., Muyle, A. & Gaut, B. S. Evolutionary genomics and the domestication of grapes. In The Grape Genome (eds Cantu, D. & Walker, M. A.) 39–55 (Springer, Berlin, 2019).

    Google Scholar 

  • 57.

    Meléndez, E. et al. Evolution of wild and feral vines from the Ega river gallery forest (Basque Country and Navarra, Spain) from 1995 to 2015. J. Int. Sci. Vigne Vin. 50, 65–75 (2016).

    Google Scholar 

  • 58.

    Arrigo, N. & Arnold, C. Naturalised Vitis rootstocks in Europe and consequences to native wild grapevine. PLoS ONE 2, e521 (2007).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Tello, J., Torres-Pérez, R., Grimplet, J. & Ibáñez, J. Association analysis of grapevine bunch traits using a comprehensive approach. Theor. Appl. Genet. 129, 227–242 (2016).

    CAS  PubMed  Google Scholar 

  • 60.

    Lijavetzky, D., Cabezas, J. A., Ibáñez, A., Rodriguez, V. & Martínez-Zapater, J. M. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genom. 8, 424 (2007).

    Google Scholar 

  • 61.

    Ghaffari, S. et al. Genetic diversity and parentage of Tunisian wild and cultivated grapevines (Vitis vinifera L.) as revealed by single nucleotide polymorphism (SNP) markers. Tree Genet. Genomes 10, 1103–1113 (2014).

    Google Scholar 

  • 62.

    Ibáñez, J. et al. Genetic origin of the grapevine cultivar Tempranillo. Am. J. Enol. Vitic. 63, 549–553 (2012).

    Google Scholar 

  • 63.

    Perrier, X. & Jacquemond-Collet, J. P. DARwin software. (2006).

  • 64.

    Pritchard, J. K., Stephens, M. & Donnely, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Earl, D. & vonHoldt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Gen. Resour. 4, 359–361 (2012).

    Google Scholar 

  • 67.

    Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).

    CAS  Google Scholar 

  • 68.

    Ramasamy, R. K., Ramasamy, S., Bindroo, B. B. & Naik, V. G. STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 3, 1–3 (2014).

    Google Scholar 

  • 69.

    Peakall, R. & Smouse, P. E. GenAlEx: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Vähä, J.-P., Erkinaro, J., Niemelä, E. & Primmer, C. R. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol. Ecol. 16, 2638–2654 (2007).

    PubMed  Google Scholar 

  • 71.

    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).

    PubMed  Google Scholar 

  • Source: Ecology -

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields