in

Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats

[adace-ad id="91168"]
  • 1.

    Messina, J. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Brady, O. J. & Hay, S. I. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).

    CAS  PubMed  Google Scholar 

  • 3.

    Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Brady, O. J. et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6, e1760 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    PAHO/WHO. Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas (Cumulative Cases), 2015–2017. World Health Organization. Available at: https://www.paho.org/hq/index.php?option=com_content&view=article&id=12390:zika-cumulative-cases&Itemid=42090&lang=en.

  • 6.

    Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Delaney, A. et al. Population-based surveillance of birth defects potentially related to Zika Virus Infection—15 States and U.S. Territories, 2016. MMWR. Morb. Mortal. Wkly. Rep. 67, 91–96 (2018).

  • 8.

    Shapiro-Mendoza, C. K. et al. Pregnancy Outcomes After Maternal Zika Virus Infection During Pregnancy ? U.S. Territories, January 1, 2016? April 25, 2017. MMWR. Morb. Mortal. Wkly. Rep. 66, 615–621 (2017).

  • 9.

    PAHO & WHO. Epidemiological update: Yellow fever. Pan Am. Heal. Organ. World Heal. Organ. 1–4 (2019).

  • 10.

    Garske, T. et al. Yellow fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med. 11, e1001638 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Nathan, N., Barry, M., Van Herp, M. & Zeller, H. Shortage of vaccines during a yellow fever outbreak in Guinea. Lancet 358, 2129–2130 (2001).

    CAS  PubMed  Google Scholar 

  • 12.

    Weitzel, T., Vial, P., Perret, C. & Aguilera, X. Shortage of yellow fever vaccination: a travel medicine emergency for Chilean travellers. Travel Med. Infect. Dis. 28, 1–2 (2019).

    PubMed  Google Scholar 

  • 13.

    Gershman, M. D. et al. Addressing a yellow fever vaccine shortage—United States, 2016–2017. MMWR. Morb. Mortal. Wkly. Rep. 66, 457–459 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Barrett, A. D. T. Yellow fever in Angola and beyond—the problem of vaccine supply and demand. N. Engl. J. Med. 375, 301–303 (2016).

    PubMed  Google Scholar 

  • 15.

    Cunha, M. S. et al. Epizootics due to yellow fever Virus in São Paulo State, Brazil: viral dissemination to new areas (2016–2017). Sci. Rep. 9, 5474 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Kraemer, M. U. G. et al. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infect. Dis. 17, 330–338 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Couto-Lima, D. et al. Potential risk of re-emergence of urban transmission of yellow fever virus in Brazil facilitated by competent Aedes populations. Sci. Rep. 7, 4848 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, e0006284 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Roiz, D. et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl. Trop. Dis. 12, e0006845 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Trewin, B. J. et al. The elimination of the dengue vector, Aedes aegypti, from Brisbane, Australia: The role of surveillance, larval habitat removal and policy. PLoS Negl. Trop. Dis. 11, e0005848 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Wilder-Smith, A. et al. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect. Dis. 17, e101–e106 (2017).

    PubMed  Google Scholar 

  • 23.

    Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Brown, J. E. et al. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution. 68, 514–525 (2014).

    CAS  PubMed  Google Scholar 

  • 25.

    Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization: an obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).

    PubMed  Google Scholar 

  • 26.

    Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: on invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, e0007864 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science. 358, eaam8327 (2017).

    PubMed  Google Scholar 

  • 28.

    Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Chang. Biol. 22, 228–236 (2016).

    ADS  PubMed  Google Scholar 

  • 29.

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).

    Google Scholar 

  • 30.

    Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st Century. Trop. Med. Health 39, S3–S11 (2011).

    Google Scholar 

  • 31.

    Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Stoddard, P. K. Managing Aedes aegypti populations in the first Zika transmission zones in the continental United States. Acta Trop. 187, 108–118 (2018).

    CAS  PubMed  Google Scholar 

  • 33.

    Estep, A. S. et al. Quantification of permethrin resistance and kdr alleles in Florida strains of Aedes aegypti (L.) and Aedes albopictus (Skuse). PLoS Negl. Trop. Dis. 12, e0006544 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Mundis, S. J., Estep, A. S., Waits, C. M. & Ryan, S. J. Spatial variation in the frequency of knockdown resistance genotypes in Florida Aedes aegypti populations. Parasit. Vectors 13, 241 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Achee, N. L. et al. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl. Trop. Dis. 13, e0006822 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Wilke, A. B. B., Beier, J. C. & Benelli, G. Transgenic mosquitoes: fact or fiction?. Trends Parasitol. 34, 456–465 (2018).

    PubMed  Google Scholar 

  • 37.

    Koenraadt, C. J. M. et al. Spatial and temporal patterns in pupal and adult production of the dengue vector Aedes aegypti in Kamphaeng Phet Thailand. Am. J. Trop. Med. Hyg. 79, 230–238 (2008).

    PubMed  Google Scholar 

  • 38.

    Barnes, A., Tun-Lin, W. & Kay, B. H. Understanding productivity, a key to Aedes aegypti surveillance. Am. J. Trop. Med. Hyg. 53, 595–601 (1995).

    PubMed  Google Scholar 

  • 39.

    Maciel-de-Freitas, R., Marques, W. A., Peres, R. C., Cunha, S. P. & De Oliveira, R. L. Variation in Aedes aegypti (Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons. Mem. Inst. Oswaldo Cruz 102, 489–496 (2007).

    PubMed  Google Scholar 

  • 40.

    Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti: a review. Mem. Inst. Oswaldo Cruz 108, 11–17 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Paul, K. K. et al. Risk factors for the presence of dengue vector mosquitoes, and determinants of their prevalence and larval site selection in Dhaka Bangladesh. PLoS ONE 13, 1–19 (2018).

    Google Scholar 

  • 42.

    Johnson, T. L. et al. Modeling the environmental suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the Contiguous United States. J. Med. Entomol. 54, 1605–1614 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Paploski, I. A. D. et al. Storm drains as larval development and adult resting sites for Aedes aegypti and Aedes albopictus in Salvador Brazil. Parasit. Vectors 9, 1–8 (2016).

    Google Scholar 

  • 44.

    Souza, R. L. et al. Effect of an intervention in storm drains to prevent Aedes aegypti reproduction in Salvador Brazil. Parasit. Vectors 10, 1–6 (2017).

    Google Scholar 

  • 45.

    WHO. Multi-country study of Aedes aegypti pupal productivity survey methodology: findings and recommendations. Available at: https://www.who.int/tdr/publications/documents/aedes_aegypti.pdf (2006).

  • 46.

    WHO. A Review of Entomological Sampling Methods and Indicators for Dengue Vectors. Available at: https://apps.who.int/iris/bitstream/handle/10665/68575/TDR_IDE_DEN_03.1.pdf;jsessionid=FAA7E1FD4786376A60693A419CA43B5F?sequence=1 (2003).

  • 47.

    Dowling, Z., Ladeau, S. L., Armbruster, P., Biehler, D. & Leisnham, P. T. Socioeconomic status affects mosquito (Diptera: Culicidae) larval habitat type availability and infestation level. J. Med. Entomol. 50, 764–772 (2013).

    PubMed  Google Scholar 

  • 48.

    Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 49.

    da Cruz Ferreira, D. A. et al. Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. Parasit. Vectors 10, 78 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Dunphy, B. M. et al. Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci. Rep. 9, 1–10 (2019).

    Google Scholar 

  • 51.

    Wilk-da-silva, R. et al. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Medley, K. A., Westby, K. M. & Jenkins, D. G. Rapid local adaptation to northern winters in the invasive Asian tiger mosquito Aedes albopictus: a moving target. J. Appl. Ecol. 56, 2518–2527 (2019).

    Google Scholar 

  • 54.

    Pichler, V. et al. Complex interplay of evolutionary forces shaping population genomic structure of invasive Aedes albopictus in southern Europe. PLoS Negl. Trop. Dis. 13, e0007554 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Wilke, A. B. B., Vasquez, C., Mauriello, P. J. & Beier, J. C. Ornamental bromeliads of Miami-Dade County, Florida are important breeding sites for Aedes aegypti (Diptera: Culicidae). Parasit. Vectors 11, 283 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Santos, C. B., Leite, G. R. & Falqueto, A. Does native bromeliads represent important breeding sites for Aedes aegypti (L.) (Diptera: Culicidae) in urbanized areas? Neotrop. Entomol. 40, 278–281 (2011).

    CAS  PubMed  Google Scholar 

  • 57.

    Mocellin, M. G. et al. Bromeliad-inhabiting mosquitoes in an urban botanical garden of dengue endemic Rio de Janeiro—are bromeliads productive habitats for the invasive vectors Aedes aegypti and Aedes albopictus?. Mem. Inst. Oswaldo Cruz 104, 1171–1176 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Ceretti-Junior, W. et al. Species composition and ecological aspects of immature mosquitoes (Diptera: Culicidae) in Bromeliads in urban parks in the City of São Paulo Brazil. J. Arthropod. Borne. Dis. 10, 102–112 (2016).

    PubMed  Google Scholar 

  • 59.

    Chitolina, R. F., Anjos, F. A., Lima, T. S., Castro, E. A. & Costa-Ribeiro, M. C. V. Raw sewage as breeding site to Aedes (Stegomyia) aegypti (Diptera, culicidae). Acta Trop. 164, 290–296 (2016).

    CAS  PubMed  Google Scholar 

  • 60.

    Che-Mendoza, A. et al. Operational guide for assessing the productivity of Aedes aegypti breeding sites. World Heal. Organ. 1, 1–30 (2011).

    Google Scholar 

  • 61.

    MacCormack-Gelles, B., Lima Neto, A. S. & Sousa, G. S. Evaluation of the usefulness of Aedes aegypti rapid larval surveys to anticipate seasonal dengue transmission between 2012–2015 in Fortaleza. Brazil. Acta Trop. 205, 105391 (2020).

    PubMed  Google Scholar 

  • 62.

    Islam, S., Haque, C. E., Hossain, S. & Rochon, K. Role of container type, behavioural, and ecological factors in Aedes pupal production in Dhaka, Bangladesh: an application of zero-inflated negative binomial model. Acta Trop. 193, 50–59 (2019).

    PubMed  Google Scholar 

  • 63.

    Wilke, A. B. B. et al. Mosquito adaptation to the extreme habitats of urban construction sites. Trends Parasitol. 35, 607–614 (2019).

    PubMed  Google Scholar 

  • 64.

    Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Mutebi, J.-P. et al. Zika virus MB16-23 in mosquitoes, Miami-Dade County, Florida, USA, 2016. Emerg. Infect. Dis. 24, 808–810 (2018).

    PubMed Central  Google Scholar 

  • 66.

    Wilke, A. B. B., Carvajal, A., Vasquez, C., Petrie, W. D. & Beier, J. C. Urban farms in Miami-Dade county, Florida have favorable environments for vector mosquitoes. PLoS ONE 15, e0230825 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Paules, C. I. & Fauci, A. S. Yellow fever—once again on the radar screen in the Americas. N. Engl. J. Med. 376, 1397–1399 (2017).

    PubMed  Google Scholar 

  • 68.

    Abdul-Ghani, R. et al. Impact of population displacement and forced movements on the transmission and outbreaks of Aedes-borne viral diseases: Dengue as a model. Acta Trop. 197, 105066 (2019).

    PubMed  Google Scholar 

  • 69.

    PAHO. Reported Cases of Dengue Fever in The Americas. Pan-American Health Organization. Available at: http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html.

  • 70.

    Poletti, P. et al. Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS ONE 6, e18860 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Gould, E. A., Gallian, P., De Lamballerie, X. & Charrel, R. N. First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality!. Clin. Microbiol. Infect. 16, 1702–1704 (2010).

    CAS  PubMed  Google Scholar 

  • 72.

    Gjenero-Margan, I. et al. Autochthonous dengue fever in Croatia, August–September 2010. Euro Surveill 16, 1–4 (2011).

    Google Scholar 

  • 73.

    Rosenberg, R. et al. Vital signs: trends in reported vectorborne disease cases—United States and Territories, 2004–2016. MMWR. Morb. Mortal. Wkly. Rep. 67, 496–501 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Bureau of Transportation Statistics. 2016 Annual and December U.S. Airline Traffic Data. Available at: https://www.bts.gov/newsroom/2017-traffic-data-us-airlines-and-foreign-airlines-us-flights (2017).

  • 75.

    International Air Transport Association. Worldwide annual air passenger numbers. Available at: https://www.iata.org/pressroom/pr/Pages/2018-09-06-01.aspx (2017).

  • 76.

    Likos, A. et al. Local mosquito-borne transmission of Zika Virus—Miami-Dade and Broward Counties, Florida, June–August 2016. MMWR. Morb. Mortal. Wkly. Rep. 65, 1032–1038 (2016).

    PubMed  Google Scholar 

  • 77.

    Centers for Disease Control and Prevention. Imported Human disease cases Reported to CDC by county of residence. Available at: https://wwwn.cdc.gov/arbonet/Maps/ADB_Diseases_Map/index.html (2020).

  • 78.

    Florida Department of Health. Mosquito-Borne Illness Advisory. Available at: http://miamidade.floridahealth.gov/_newsroom/2019/_documents/2019-12-23-advisory.pdf (2019).

  • 79.

    Wilke, A. B. B., Vasquez, C., Petrie, W., Caban-Martinez, A. J. & Beier, J. C. Construction sites in Miami-Dade County, Florida are highly favorable environments for vector mosquitoes. PLoS ONE 13, e0209625 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Wilke, A. B. B., Vasquez, C., Petrie, W. & Beier, J. C. Tire shops in Miami-Dade County, Florida are important producers of vector mosquitoes. PLoS ONE 14, e0217177 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Wilke, A. B. B. et al. Cemeteries in Miami-Dade County, Florida are important areas to be targeted in mosquito management and control efforts. PLoS ONE 15, e0230748 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Darsie, Jr., R. F. & Morris, C. D. Keys to the Adult Females and Fourth Instar Larvae of the Mosquitoes of Florida (Diptera, Culicidae). Technical Bulletin of the Florida Mosquito Control Association vol. 1 (Bulletin of the Florida mosquito control association, 2000).

  • 83.

    Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 26, 24 (1958).

    MathSciNet  MATH  Google Scholar 

  • 84.

    McDonald, J. F. & Moffitt, R. A. The uses of tobit analysis. Rev. Econ. Stat. 62, 318 (1980).

    Google Scholar 

  • 85.

    Yee, D. A. Tires as habitats for mosquitoes: a review of studies within the Eastern United States: Table 1. J. Med. Entomol. 45, 581–593 (2008).

    PubMed  Google Scholar 

  • 86.

    Reiter, P. & Sprenger, D. The used tire trade: a mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 3, 494–501 (1987).

    CAS  PubMed  Google Scholar 

  • 87.

    Dinh, E. T. N. & Novak, R. J. Diversity and abundance of mosquitoes inhabiting waste tires in a subtropical swamp in urban Florida. J. Am. Mosq. Control Assoc. 34, 47–49 (2018).

    PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Peering into peer review

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia