Resource partitioning among stranded aquatic mammals from Amazon and Northeastern coast of Brazil revealed through Carbon and Nitrogen Stable Isotopes

  • 1.

    Mèndez-Fernandez, P. et al. Foraging ecology of five toothed whale species in the Northwest Iberian Peninsula, inferred using carbon and nitrogen isotope ratios. J. Exp. Mar. Bio. Ecol. 413, 150–158 (2012).

    Google Scholar 

  • 2.

    Browning, N. E., Cockcroft, V. G. & Worthy, G. A. J. Resource partitioning among South African delphinids. J. Exp. Mar. Bio. Ecol. 457, 15–21 (2014).

    Google Scholar 

  • 3.

    Loizaga de Castro, R., Saporiti, F., Vales, D. G., Cardona, L. & Crespo, E. A. Using stable isotopes to assess whether two sympatric dolphin species share trophic resources. Mar. Mammal Sci. 33, 1235–1244 (2017).

    Google Scholar 

  • 4.

    Franco-Trecu, V., Drago, M., Costa, P., Dimitriadis, C. & Passadore, C. Trophic relationships in apex predators in an estuary system: a multiple-method approximation. J. Exp. Mar. Bio. Ecol. 486, 230–236 (2017).

    Google Scholar 

  • 5.

    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).

    CAS  Google Scholar 

  • 6.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    ADS  CAS  Google Scholar 

  • 7.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geo-Marine Lett. 45, 341–351 (1981).

    CAS  Google Scholar 

  • 8.

    Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).

    ADS  CAS  Google Scholar 

  • 9.

    Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Google Scholar 

  • 10.

    McCutchan, J. H., Lewis, W. M., Kendall, C. & Mcgrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. OIKOS 102, 378–390 (2003).

    CAS  Google Scholar 

  • 11.

    Vanderklift, M. A. & Ponsard, S. Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia 136, 169–182, (2003).

    ADS  PubMed  Google Scholar 

  • 12.

    Fry, B. Stable Isotope Ecology (Springer, Berlin, 2006).

    Google Scholar 

  • 13.

    Bearhop, S. et al. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).

    Google Scholar 

  • 14.

    Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front Ecol Env. 5, 429–436 (2007).

  • 15.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Google Scholar 

  • 16.

    Layman, C. A., Arrington, D. A., Montana, C. G. & Post, D. M. Can stable isotope ratio provide for community-wide measures of trophic structure?. Ecology 88, 42–48 (2007).

    PubMed  Google Scholar 

  • 17.

    Ryan, C. et al. Stable isotope analysis of baleen reveals resource partitioning among sympatric rorquals and population structure in fin whales. Mar. Ecol. Prog. Ser. 479, 251–261 (2013).

    ADS  CAS  Google Scholar 

  • 18.

    Staudinger, M. D., McAlarney, R. J., McLellan, W. A. & Ann Pabst, D. Foraging ecology and niche overlap in pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales from waters of the U.S. mid-Atlantic coast. Mar. Mammal Sci. 30, 626–655 (2014).

  • 19.

    Gallagher, A. J., Shiffman, D. S., Byrnes, E. E., Hammerschlag-Peyer, C. M. & Hammerschlag, N. Patterns of resource use and isotopic niche overlap among three species of sharks occurring within a protected subtropical estuary. Aquat. Ecol. 51, 435–448 (2017).

    CAS  Google Scholar 

  • 20.

    Graham, B. S., Koch, P. L., Newsome, S. D., Mcmahon, K. W. & Aurioles, D. Isoscapes. in (ed. J.B.West) 299–318 (Springer Science, London 2010).

  • 21.

    Jaeger, A., Lecomte, V. J., Weimerskirch, H., Richard, P. & Cherel, Y. Seabird satellite tracking validates the use of latitudinal isoscapes to depict predators ’ foraging areas in the Southern Ocean. RAPID Commun. MASS Spectrom. 24, 3456–3460 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Ocean. 58, 697–714 (2013).

    CAS  Google Scholar 

  • 23.

    Brault, E. K., Koch, P. L., Mcmahon, K. W. & Broach, K. H. Carbon and nitrogen zooplankton isoscapes in West Antarctica reflect oceanographic transitions. Mar. Ecol. Prog. Ser. 593, 29–45 (2018).

    ADS  CAS  Google Scholar 

  • 24.

    Troina, C. G. et al. Deep-sea research part I Zooplankton-based δ13C and δ15N isoscapes from the outer continental shelf and slope in the subtropical western South Atlantic. Deep. Res. Part I (2020).

    Article  Google Scholar 

  • 25.

    Montoya, J. P. Abundance as indicators of forest nitrogen status and soil carbon dynamics stable isotopes in ecology and environmental science. In Stable Isotopes in Ecology and Environmental Science, 176–201 (ed. Lajtha, R. M. K.) (Blackwell Publishing, London, 2007).

    Google Scholar 

  • 26.

    Sigman, D. M., Karsh, K. L. & Casciotti, K. L. Ocean Process Tracers: Nitrogen Isotopes in the Ocean. in Encyclopedia of Ocean Sciences (ed. Steele, J.H., Turekian, K.K., Thorpe, S. A.) 4138–4153 (Elsevier Ltd, 2009).

  • 27.

    Laws, E. A., Popp, B. N., Bidigare, J. R. R., Kennicutt, M. C. & Macko, S. A. Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical considerations and experimental results. Geochim. Cosmochim. Acta 59, 1131–1138 (1995).

    ADS  CAS  Google Scholar 

  • 28.

    Trueman, C. N. & St John Glew, K. Chapter 6—Isotopic Tracking of Marine Animal Movement Tracking Animal Migration with Stable Isotopes (Elsevier Inc., London, 2019).

    Google Scholar 

  • 29.

    France, R. L. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar. Ecol. Prog. Ser. 124, 307–312 (1995).

    ADS  Google Scholar 

  • 30.

    Mayer, M., Joye, B. & Aller, C. Importance of suspended participates in riverine delivery of bioavailable nitrogen to coastal zones. Glob. Biochem. Cycles 12, 573–579 (1998).

    ADS  CAS  Google Scholar 

  • 31.

    Druffel, E. R. M., Bauer, J. E. & Griffin, S. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean. Geochem. Geophys. Geosyst 6, 1–7 (2005).

    Google Scholar 

  • 32.

    Weber, S. C. et al. Amazon River influence on nitrogen fixation and export production in the western tropical North Atlantic. Limnol. Ocean. (2016).

    Article  Google Scholar 

  • 33.

    Cai, D. L. & Edmond, J. M. Sources and transport of particulate organic carbon in the Amazon River and Estuary. Estuar. Coast. Shelf Sci. 26, 1–14 (1988).

    ADS  CAS  Google Scholar 

  • 34.

    Weber, S. C. et al. Habitat delineation in highly variable marine environments. Front. Mar. Sci. 6, 1–16 (2019).

    ADS  Google Scholar 

  • 35.

    De Menezes, M. P. M., Berger, U. & Mehlig, U. Mangrove vegetation in Amazonia: a review of studies from the coast of Pará and Maranhão States, north Brazil. Acta Amaz. 38, 403–420 (2008).

    Google Scholar 

  • 36.

    Hayashi, S. N., Souza-filho, P. W. M., Nascimento, W. R. Jr. & Fernandes, M. E. B. The effect of anthropogenic drivers on spatial patterns of mangrove land use on the Amazon coast. PLoS ONE 14, 1–20 (2019).

    Google Scholar 

  • 37.

    Barthem, R. B. Ocorrência, distribuição e biologia dos peixes da Baía de Marajó, Estuário Amazônico. Bol. do Mus. Para. Emílio Goeldi. Série Zool. 2, 49–69 (1985).

  • 38.

    Camargo, M. & Isaac, V. Os peixes estuarinos da região Norte do Brasil: Lista de espécie e consideração sobre sua distribuição geográfica. Bol. do Mus. Para. Emílio Goeldi, Ser. Zool. 17, 135 – 147 (2002).

  • 39.

    Siciliano, S. et al. Revisão do conhecimento sobre os mamíferos aquáticos da costa norte do Brasil. Arq. do Mus. Nac. 66, 381–401 (2008).

    Google Scholar 

  • 40.

    Meirelles, A. C. O. et al. Cetacean strandings on the coast of Ceará, north-eastern Brazil (1992–2005). J. Mar. Biol. Assoc. United Kingdom 89, 1–8 (2009).

    Google Scholar 

  • 41.

    Emin-Lima, R. et al. Os mamíferos aquáticos associados aos manguezais da costa norte brasileira. in Mamíferos de Restingas e Manguezais do Brasil 45–57 (Sociedade Brasileira de Mastozoologia, 2010).

  • 42.

    Siciliano, S. et al. New genetic data extend the range of river dolphins Inia in the Amazon Delta. Hydrobiologia 777. (2016).

  • 43.

    Siciliano, S. et al. Confirmed sightings of the Antillean manatee (Trichechus manatus) on the coast of Ilha de Marajó, northern Brazilian coast. JMBA Glob. Mar. Environ. 34–35 (2007).

  • 44.

    Alves, M. D. et al. First abundance estimate of the Antillean manatee (Trichechus manatus) in Brazil by aerial survey. J. Mar. Biol. Assoc. UK (2015).

    Article  Google Scholar 

  • 45.

    Monteiro-Neto, C. et al. Impact of fisheries on the tucuxi (Sotalia fluviatilis) and rough-toothed dolphin (Steno bredanensis) populations off Ceará state, northeastern Brazil. Aquat. Mamm. 26, 49–56 (2000).

    Google Scholar 

  • 46.

    Barreto, A. S. et al. Plano de Ação nacional para Conservação dos Mamíferos Aquáticos – Pequenos Cetáceos. (2010).

  • 47.

    Moura, J. F., Hauser-Davis, R. A., Lemos, L., Emin-Lima, R. & Siciliano, S. Guiana Dolphins (Sotalia guianensis) as marine ecosystem sentinels: ecotoxicology and emerging diseases. in Reviews of Environmental Contamination and Toxicology, Vol. 228 (ed Whitacre, D. M.) 1–29, (2014).

  • 48.

    Costa, A. F. et al. Stranding survey as a framework to investigate rare cetacean records of the north and north-eastern Brazilian coasts. Zookeys (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Domning, D. P. Distribution and Status of manatees Trichechus spp. near the mouth of the Amazon River, Brazil. Biol. Conserv. 19, 85–97 (1981).

    Google Scholar 

  • 50.

    Siciliano, S. et al. Going back to my roots: Confirmed sightings of the Antillean manatee (Trichechus manatus) on the coast of Ilha de Marajó, northern Brazilian coast. JMBA Glob. Mar. Environ. 1, 34–35 (2007).

    Google Scholar 

  • 51.

    Cunha, H. A., da Silva, V. M. F. & Solé-Cava, A. M. Molecular Ecology and Systematics of Sotalia Dolphins. in Biology, Evolution and Conservation of Rivers Dolphins within South America and Asia (eds. Ruiz-Garcia, M. & Shostell, J.) 261–283 (Nova Science Publishers, Inc., 2010).

  • 52.

    Hrbek, T. et al. A new species of river dolphin from Brazil or: how little do we know our biodiversity. PLoS ONE 9, (2014).

  • 53.

    Niño-Torres, C. A., Gallo-Reynoso, J. P., Galván-Magaña, F., Escobar-Briones, E. & Macko, S. A. Isotopic analysis of δ13C, δ15N, and δ34S ‘a feeding tale’ in teeth of the longbeaked common dolphin, Delphinus capensis. Mar. Mammal Sci. 22, 831–846, (2006).

    Google Scholar 

  • 54.

    Pinela, A. M., Borrell, A., Cardona, L. & Aguilar, A. Stable isotope analysis reveals habitat partitioning among marine mammals off the NW African coast and unique trophic niches for two globally threatened species. Mar. Ecol. Prog. Ser. 416, 295–306, (2010).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Walker, J. L. & Macko, S. A. Dietary studies of marine mammals using stable carbon and nitrogen isotopic ratios of teeth. Mar. Mammal Sci. 15, 314–334 (1999).

    Google Scholar 

  • 56.

    Riccialdelli, L., Newsome, S. D., Fogel, M. L. & Goodall, R. N. P. Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar. Ecol. Prog. Ser. 418, 235–248 (2010).

    ADS  Google Scholar 

  • 57.

    Vighi, M. et al. Stable isotopes indicate population structuring in the Southwest Atlantic population of right whales (Eubalaena australis). PLoS ONE 9, (2014).

  • 58.

    Junk, W. J. et al. A classification of major naturally-occurring amazonian lowland wetlands. Wetlands 31, 623–640 (2011).

    Google Scholar 

  • 59.

    Rosário, R. P., Borba, T. A. C., Santos, A. S. & Rollnic, M. Variability of Salinity in Pará River Estuary: 2D Analysis with Flexible Mesh Model. J. Coast. Res. 75, 128–132 (2016).

    Google Scholar 

  • 60.

    Bezerra, M. O. & Rollnic, M. Physical oceanographic behavior at the Guamá/Acará-Moju and the Paracauari river mouths, Amazon Coast (Brazil). in Journal of Coastal Research 1448–1452 (Proceedings of The 11th International Coastal Synposium, 2011).

  • 61.

    Rosário, R. P. & Santos, A. S. Contribution to understanding the surface seawater intrusion in the Pará River estuary during low discharge. Proceedings of the 17th Physics of Estuaries and Coastal Seas (PECS) (2014).

  • 62.

    Nittrouer, C. a. & DeMaster, D. J. The Amazon shelf setting: tropical, energetic, and influenced by a large river. Cont. Shelf Res. 16, 553–573 (1996).

  • 63.

    Moreira, A. M. & Mavigner, D. S. Conhecendo história e geografia do Piauí. (Gráfica Ferraz, 2007).

  • 64.

    Szczygielski, A. et al. Evolution of the Parnaíba Delta (NE Brazil) during the late Holocene. Geo-Marine Lett. 35. 105–117, (2014).

    ADS  Google Scholar 

  • 65.

    Foote, A. D. et al. Tracking niche variation over millennial timescales in sympatric killer whale lineages. Proc. Biol. Sci. 280, 2–9 (2013).

    Google Scholar 

  • 66.

    Newsome, S. D., Koch, P. L., Etnier, M. A. & Aurioles-Gamboa, D. Using Carbon and Nitrogen Isotope Values To Investigate Maternal Strategies in Northeast Pacific Otariids. Mar. Mammal Sci. 22, 556–572 (2006).

    Google Scholar 

  • 67.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

    PubMed  Google Scholar 

  • 68.

    Bisi, T. L. et al. Trophic relationships and habitat preferences of Delphinids from the Southeastern Brazilian Coast determined by carbon and nitrogen stable isotope composition. PLoS ONE 8, e82205 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Botta, S., Hohn, A. A., Macko, S. A. & Secchi, E. R. Isotopic variation in delphinids from the subtropical western South Atlantic. J. Mar. Biol. Assoc. United Kingdom (2012).

    Article  Google Scholar 

  • 70.

    Medeiros, P. et al. Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean. Global Biogeochem. Cycles 29, 677–690 (2015).

    ADS  CAS  Google Scholar 

  • 71.

    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Loick-Wilde, N. et al. Nitrogen sources and net growth efficiency of zooplankton in three Amazon River plume food webs. Limnol. Oceanogr. 61, 460–481 (2016).

    ADS  CAS  Google Scholar 

  • 73.

    Fernández, R. et al. Stable isotope analysis in two sympatric populations of bottlenose dolphins Tursiops truncatus: Evidence of resource partitioning?. Mar. Biol. 158, 1043–1055. (2011).

    Article  Google Scholar 

  • 74.

    Riccialdelli, L. & Goodall, N. Intra-specific trophic variation in false killer whales (Pseudorca crassidens) from the southwestern South Atlantic Ocean through stable isotopes analysis. Mamm. Biol. 80, 298–302 (2015).

    Google Scholar 

  • 75.

    Haro, D., Riccialdelli, L., Blank, O., Matus, R. & Sabat, P. Estimating the isotopic niche of males and females of false killer whales (Pseudorca crassidens) from Magellan Strait. Chile. Mar. Mammal Sci. (2018).

    Article  Google Scholar 

  • 76.

    Bastida, R., Rodríguez, D. & Secchi, E. Mamiferos Acuaticos de Sudamerica y Antartida. (Vázquez Manzini Editores, 2007).

  • 77.

    Cardoso, J., Francisco, A., de Souza, S. P. & Siciliano, S. Rough-toothed dolphins (Steno bredanensis) Along Southeastern Brazil: report of an anomalous pigmented juvenile and description of social and feeding behaviors. Aquat. Mamm. 45, 30–36 (2019).

    Google Scholar 

  • 78.

    Johns, W. E. et al. Annual cycle and variability of the North Brazil current. J. Phys. Oceanogr. 28, 103–128 (1998).

    ADS  Google Scholar 

  • 79.

    Gross, A., Kiszka, J., Canneyt, O. V., Richard, P. & Ridoux, V. A preliminary study of habitat and resource partitioning among co-occurring tropical dolphins around Mayotte, southwest Indian Ocean. Estuar. Coast. Shelf Sci. 84, 367–374 (2009).

    ADS  CAS  Google Scholar 

  • 80.

    Trites, A. W. W. Marine mammal trophic levels and interactions. In Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 1628–1633 (Academic Press, Berlin, 2001).

    Google Scholar 

  • 81.

    Ruiz-Cooley, R. I., Engelhaupt, D. T. & Ortega-Ortiz, J. G. Contrasting C and N isotope ratios from sperm whale skin and squid between the Gulf of Mexico and Gulf of California: Effect of habitat. Mar. Biol. 159, 151–164 (2012).

    CAS  Google Scholar 

  • 82.

    Goes, J. I. et al. Influence of the Amazon River discharge on the biogeography of phytoplankton communities in the western tropical north Atlantic. Prog. Oceanogr. 120, 29–40 (2014).

    ADS  Google Scholar 

  • 83.

    Montoya, J. P., Landrum, J. P. & Weber, S. C. Amazon River influence on nitrogen fixation in the western tropical North Atlantic. J. Mar. Res. 77, 191–213 (2019).

    Google Scholar 

  • 84.

    Beltrán-Pedreros, S. & Pantoja, T. M. A. Feeding habits of Sotalia fluviatilis in the Amazonian Estuary. Acta Sci. – Biol. Sci. 28, 389–393 (2006).

    Google Scholar 

  • 85.

    Giarrizzo, T., Schwamborn, R. & Saint-Paul, U. Utilization of carbon sources in a northern Brazilian mangrove ecosystem. Estuar. Coast. Shelf Sci. 95, 447–457. (2011).

    ADS  CAS  Article  Google Scholar 

  • 86.

    Crema, L. C., da Silva, V. M. F., Botta, S., Trumbore, S. & Piedade, M. T. F. Does water type influence diet composition in Amazonian manatee (Trichechus inunguis)? A case study comparing black and clearwater rivers. Hydrobiologia (2019).

    Article  Google Scholar 

  • 87.

    Lins, A. L. F. A., Gurgel, E. S. C., Bastos, M. N. C., Sousa, M. E. M. & Emin-Lima, R. Which aquatic plants of the intertidal zone do manatees of the Amazon estuary eat? Sirenews 11–12 (2014).

  • 88.

    Ciotti, L. L., Luna, F. O. & Secchi, E. Intra- and interindividual variation in D13C and D15N composition in the Antillean manatee Trichechus manatus manatus from northeastern Brazil. Mar. Mammal Sci. (2014).

    Article  Google Scholar 

  • 89.

    Sousa, M. E. M., Martins, B. M. L. & Fernandes, M. E. B. Meeting the giants: the need for local ecological knowledge (LEK) as a tool for the participative management of manatees on Marajó Island, Brazilian Amazonian coast. Ocean Coast. Manag. 86, 53–60 (2013).

    Google Scholar 

  • 90.

    Best, R. C. & Da Silva, V. M. F. Inia geoffrensis. Mamm. Species 1–8 (1993).

  • 91.

    Costa, A. F. et al. How far does it go along the coast? Distribution and first genetic analyses of the boto (Inia geoffrensis) along the coast of Pará, Amazon, Brazil. In 2013 SC65a Meeting of The International Whaling Commission 1–12 (IWC/Scientific Commitee, Jeju Island, South Korea, Small Cetaceans, Cambridge, 2013).

  • 92.

    Martin, A. R. R. & Da Silva, V. M. F. River dolphins and flooded forest: seasonal habitat use and sexual segregation of botos (Inia geoffrensis) in an extreme cetacean environment. J. Zool. Lond. 263, 295–305 (2004).

  • 93.

    Da Silva, V. M. F., Goulding, M. & Barthem, R. Golfinhos da Amazônia. (INPA, 2008).

  • 94.

    Di Beneditto, A. P. M. & Ramos, R. M. A. Biology of the marine tucuxi dolphin (Sotalia fluviatilis) in south-eastern Brazil. J. Mar. Biol. Assoc. United Kingdom 84, 1245–1250 (2004).

    Google Scholar 

  • 95.

    Pansard, K. C. A., Gurgel, H. D. C. B., Andrade, L. C. D. A. & Yamamoto, M. E. Feeding ecology of the estuarine dolphin (Sotalia guianensis) on the coast of Rio Grande do Norte, Brazil. Mar. Mammal Sci. 27, 673–687 (2011).

    Google Scholar 

  • 96.

    Smith, T. D. & Burrows, A. M. Mobility of the axial regions in a captive Amazon river dolphin (Inia geoffrensis). in Biology, Evolution, and Conservation of river dolphins within South America and Asia (eds. Ruiz-Garcia, M. & Shostell, J. M.) 71–81 (Nova Science Publishers, Inc., 2009).

  • 97.

    Ramos, R. M. A. et al. Morphology of the Guiana dolphin (Sotalia guianensis) off southeastern Brazil: growth and geographic variation. Lat. Am. J. Aquat. Mamm. 8, 137–149 (2010).

    Google Scholar 

  • 98.

    Emin-Lima, R. Preenchendo Lacunas em Saúde de Ecossistemas: Estudo Morfológico e de Contaminantes nos Botos-cinza (Sotalia guianensis) da Costa Norte do Brasil. (Tese de Doutorado. Programa de Pós-Graduação em Saúde Pública e Meio Ambiente. Escola Nacional e Saúde Pública, FIOCRUZ, 147p., 2012).

  • 99.

    Arcoverde, D. L. et al. Evaluation of periotic–timpanic bone complex of Sotalia guianensis (Cetacea: Delphinidae) as tool in identification of geographic variations. J. Mar. Biol. Assoc. United Kingdom 94, 1127–1132. (2013).

    Article  Google Scholar 

  • 100.

    Botta, S. Caracterização do uso do habitat e identificação de Unidades Populacionais de pequenos cetáceos do Atlântico Sul-Ocidental através de métodos químicos. (Tese de Doutorado. PÓS-GRADUAÇÃO EM OCEANOGRAFIA BIOLÓGICA. UNIVERSIDADE FEDERAL DO RIO GRANDE – FURG, 238p., 2011).

  • 101.

    Camargo, M. & Isaac, V. Os peixes estuarinos da região norte do Brasil: lista de espécies e considerações sobre sua distribuição geográfica. Bol. do Mus. Para. Emílio Goeldi, série Antropol. 17, 133–157 (2002).

  • 102.

    Vieira, J. O. Diferenças alimentares em populações de boto-cinza Sotalia guianensis (Van Benédén, 1864) (Cetacea, Delphinidae) nas costas Norte e Nordeste brasileira. (Dissertação de Mestrado. Programa de Pós-Graduação em Zoologia. Universidade Federal do Pará, 2014).

  • Source: Ecology -

    Study: A plunge in incoming sunlight may have triggered “Snowball Earths”

    A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey