in

Response of vertebrate scavengers to power line and road rights-of-way and its implications for bird fatality estimates

[adace-ad id="91168"]
  • 1.

    Dulac, J. Global land transport infrastructure requirements: estimating road and railway infrastructure capacity and costs to 2050. (International Energy Agency, Paris, France, 2013).

  • 2.

    D’Amico, M. et al. Bird on the wire: landscape planning considering costs and benefits for bird populations coexisting with power lines. AMBIO A J. Hum. Environ. 47, 650–656 (2018).

    Google Scholar 

  • 3.

    Morelli, F., Beim, M., Jerzak, L., Jones, D. & Tryjanowski, P. Can roads, railways and related structures have positive effects on birds? A review. Transp. Res. Part D Transp. Environ. 30, 21–31 (2014).

    Google Scholar 

  • 4.

    Laurance, W. F. et al. Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. 25, R259–R262 (2015).

    CAS  PubMed  Google Scholar 

  • 5.

    Ascensão, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Glob. Ecol. Conserv. 19, e00661 (2019).

    Google Scholar 

  • 6.

    Bernardino, J. et al. Bird collisions with power lines: state of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).

    Google Scholar 

  • 7.

    Loss, S. R., Will, T. & Marra, P. P. Estimation of bird-vehicle collision mortality on U.S. roads. J. Wildl. Manag. 78, 763–771 (2014).

    Google Scholar 

  • 8.

    Collinson, W. J., Parker, D. M., Bernard, R. T. F., Reilly, B. K. & Davies-Mostert, H. T. Wildlife road traffic accidents: a standardized protocol for counting flattened fauna. Ecol. Evol. 4, 3060–3071 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Barrientos, R., Alonso, J. C., Ponce, C. & Palacín, C. Meta-analysis of the effectiveness of marked wire in reducing avian collisions with power lines. Conserv. Biol. 25, 893–903 (2011).

    PubMed  Google Scholar 

  • 10.

    Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13, 603–612 (2010).

    Google Scholar 

  • 11.

    Borner, L. et al. Bird collision with power lines: estimating carcass persistence and detection associated with ground search surveys. Ecosphere 8, e01966 (2017).

    Google Scholar 

  • 12.

    Guinard, É, Julliard, R. & Barbraud, C. Motorways and bird traffic casualties: carcasses surveys and scavenging bias. Biol. Conserv. 147, 40–51 (2012).

    Google Scholar 

  • 13.

    Santos, S. M., Carvalho, F. & Mira, A. How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys. PLoS ONE 6, e25383 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222, 146–153 (2018).

    Google Scholar 

  • 15.

    Huso, M., Dalthorp, D., Miller, T. J. & Bruns, D. Wind energy development: methods to assess bird and bat fatality rates post-construction. Hum. Wildl. Interact. 10, 62–70 (2016).

    Google Scholar 

  • 16.

    Smallwood, K. S. Estimating wind turbine-caused bird mortality. J. Wildl. Manag. 71, 2781–2791 (2007).

    Google Scholar 

  • 17.

    Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20, 173–181 (2017).

    Google Scholar 

  • 18.

    Schutgens, M., Shaw, J. M. & Ryan, P. G. Estimating scavenger and search bias for collision fatality surveys of large birds on power lines in the Karoo, South Africa. Ostrich 85, 39–45 (2014).

    Google Scholar 

  • 19.

    Loss, S. R., Will, T. & Marra, P. P. Direct human-caused mortality of birds: improving quantification of magnitude and assessment of population impact. Front. Ecol. Environ. 10, 357–364 (2012).

    Google Scholar 

  • 20.

    Smallwood, K. S., Bell, D. A., Snyder, S. A. & DiDonato, J. E. Novel scavenger removal trials increase wind turbine—caused avian fatality estimates. J. Wildl. Manag. 74, 1089–1096 (2010).

    Google Scholar 

  • 21.

    Farfán, M. A., Duarte, J., Fa, J. E., Real, R. & Vargas, J. M. Testing for errors in estimating bird mortality rates at wind farms and power lines. Bird Conserv. Int. 27, 431–439 (2017).

    Google Scholar 

  • 22.

    Flint, P. L., Lance, E. W., Sowl, K. M. & Donnelly, T. F. Estimating carcass persistence and scavenging bias in a human-influenced landscape in western Alaska. J. F. Ornithol. 81, 206–214 (2010).

    Google Scholar 

  • 23.

    Paula, J. et al. Camera-trapping as a methodology to assess the persistence of wildlife carcasses resulting from collisions with human-made structures. Wildl. Res. 41, 717–725 (2015).

    Google Scholar 

  • 24.

    Shaw, J. M., van der Merwe, R., van der Merwe, E. & Ryan, P. G. Winter scavenging rates under power lines in the Karoo, South Africa. Afr. J. Wildl. Res. 45, 122–126 (2015).

    Google Scholar 

  • 25.

    Stevens, B. S., Reese, K. P. & Connelly, J. W. Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75, 437–449 (2011).

    Google Scholar 

  • 26.

    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).

    PubMed  Google Scholar 

  • 27.

    Riding, C. S. & Loss, S. R. Factors influencing experimental estimation of scavenger removal and observer detection in bird-window collision surveys. Ecol. Appl. 28, 2119–2129 (2018).

    PubMed  Google Scholar 

  • 28.

    Rosene, W. & Lay, D. W. Disappearance and visibility of quail remains. J. Wildl. Manag. 27, 139–142 (1963).

    Google Scholar 

  • 29.

    Lambertucci, S. A., Speziale, K. L., Rogers, T. E. & Morales, J. M. How do roads affect the habitat use of an assemblage of scavenging raptors?. Biodivers. Conserv. 18, 2063–2074 (2009).

    Google Scholar 

  • 30.

    Donázar, J. A., Ceballos, O. & Cortes-Avizanda, A. Tourism in protected areas: disentangling road and traffic effects on intra-guild scavenging processes. Sci. Total Environ. 630, 600–608 (2018).

    ADS  PubMed  Google Scholar 

  • 31.

    Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Roads do not increase carrion use by a vertebrate scavenging community. Sci. Rep. 8, 16331 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).

    Google Scholar 

  • 33.

    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Smith, J. B., Laatsch, L. J. & Beasley, J. C. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition. Sci. Rep. 7, 10250 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 35.

    DeVault, T. L., Rhodes Olin, E. & Shivik, J. A. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102, 225–234 (2003).

    Google Scholar 

  • 36.

    Joseph, G. S., Seymour, C. L. & Foord, S. H. The effect of infrastructure on the invasion of a generalist predator: pied crows in southern Africa as a case-study. Biol. Conserv. 205, 11–15 (2017).

    Google Scholar 

  • 37.

    Dean, W. R. J., Milton, S. J. & Anderson, M. D. Use of road kills and roadside vegetation by Pied and Cape Crows in semi-arid South Africa. Ostrich 77, 102–104 (2006).

    Google Scholar 

  • 38.

    Slater, F. M. An assessment of wildlife road casualties—the potential discrepancy between numbers counted and numbers killed. Web Ecol. 3, 33–42 (2002).

    Google Scholar 

  • 39.

    Knight, R. L. & Kawashima, J. Y. Responses of raven and red-tailed hawk populations to linear right-of-ways. J. Wildl. Manag. 57, 266–271 (1993).

    Google Scholar 

  • 40.

    Meunier, F. D., Verheyden, C. & Jouventin, P. Use of roadsides by diurnal raptors in agricultural landscapes. Biol. Conserv. 92, 291–298 (2000).

    Google Scholar 

  • 41.

    Andersen, G. E., Johnson, C. N., Barmuta, L. A. & Jones, M. E. Use of anthropogenic linear features by two medium-sized carnivores in reserved and agricultural landscapes. Sci. Rep. 7, 11624 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Frey, S. N. & Conover, M. R. Habitat use by meso-predators in a corridor environment. J. Wildl. Manag. 70, 1111–1118 (2006).

    Google Scholar 

  • 43.

    Raiter, K. G., Hobbs, R. J., Possingham, H. P., Valentine, L. E. & Prober, S. M. Vehicle tracks are predator highways in intact landscapes. Biol. Conserv. 228, 281–290 (2018).

    Google Scholar 

  • 44.

    Silva, C., Simões, M. P., Mira, A. & Santos, S. M. Factors influencing predator roadkills: the availability of prey in road verges. J. Environ. Manag. 247, 644–650 (2019).

    Google Scholar 

  • 45.

    Bautista, L. M. et al. Effect of weekend road traffic on the use of space by raptors. Conserv. Biol. 18, 726–732 (2004).

    Google Scholar 

  • 46.

    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).

    Google Scholar 

  • 47.

    Tyler, N. et al. Ultraviolet vision and avoidance of power lines in birds and mammals. Conserv. Biol. 28, 630–631 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    IPMA. Boletins Climatológicos Mensais (Portugal Continental). Instituto Português do Mar e da Atmosfera, I. P. (IPMA, I. P.). https://www.ipma.pt/pt/publicacoes/ (2017).

  • 49.

    IPMA. Boletins Climatológicos Mensais (Portugal Continental). Instituto Português do Mar e da Atmosfera, I. P. (IPMA, I. P.). https://www.ipma.pt/pt/publicacoes/ (2018).

  • 50.

    E.P. Recenseamento de tráfego (2005)—distrito de Évora (Estradas de Portugal, S.A., 2005).

  • 51.

    R Development Core Team. R: a language and environment for statistical computing, version 3.6.1 (2019).

  • 52.

    Therneau, T. M. A Package for Survival Analysis in S. version 2.44-1.1 (2019).

  • 53.

    Bispo, R., Bernardino, J., Marques, T. A. & Pestana, D. Discrimination between parametric survival models for removal times of bird carcasses in scavenger removal trials at wind turbines sites BT. In Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications (eds LitadaSilva, J. et al.) 65–72 (Springer, Berlin, 2013).

    Google Scholar 

  • 54.

    Dalthorp, D. et al. GenEst statistical models—A generalized estimator of mortality. Techniques and Methods (2018). https://pubs.er.usgs.gov/publication/tm7A2. https://doi.org/10.3133/tm7A2.

  • 55.

    Gutierrez, R. G. Parametric frailty and shared frailty survival models. Stata J. 2, 22–44 (2002).

    Google Scholar 

  • 56.

    Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (1958).

    MathSciNet  MATH  Google Scholar 

  • 57.

    Linz, G. M., Bergman, D. L. & Bleier, W. J. Estimating survival of song bird carcasses in crops and woodlots. Prairie Nat. 29, 7–13 (1997).

    Google Scholar 

  • 58.

    Lourenço, P. M. Rice field use by raptors in two Portuguese wetlands. Airo 19, 13–18 (2009).

    Google Scholar 

  • 59.

    Simmons, R. E. Harriers of the World: Their Behaviour and Ecology (Oxford University Press, Oxford, 2000).

    Google Scholar 

  • 60.

    DeGregorio, B. A., Weatherhead, P. J. & Sperry, J. H. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity. Ecol. Evol. 4, 1589–1600 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Beasley, J. C., Olson, Z. H. & DeVault, T. L. Ecological role of vertebrate scavengers. In Carrion Ecology, Evolution and Their Applications (eds Benbow, M. E. et al.) 107–127 (CRC Press, Boca Raton, 2015).

    Google Scholar 

  • 62.

    Peisley, R. K., Saunders, M. E., Robinson, W. A. & Luck, G. W. The role of avian scavengers in the breakdown of carcasses in pastoral landscapes. EMU Austral. Ornithol. 117, 68–77 (2017).

    Google Scholar 

  • 63.

    DeVault, T. L. & Rhodes, O. E. Identification of vertebrate scavengers of small mammal carcasses in a forested landscape. Acta Theriol. (Warsz) 47, 185–192 (2002).

    Google Scholar 

  • 64.

    Hiraldo, F., Blanco, J. C. & Bustamante, J. Unspecialized exploitation of small carcasses by birds. Bird Study 38, 200–207 (1991).

    Google Scholar 

  • 65.

    Hager, S. B., Cosentino, B. J. & McKay, K. J. Scavenging affects persistence of avian carcasses resulting from window collisions in an urban landscape. J. F. Ornithol. 83, 203–211 (2012).

    Google Scholar 

  • 66.

    Prosser, P., Nattrass, C. & Prosser, C. Rate of removal of bird carcasses in arable farmland by predators and scavengers. Ecotoxicol. Environ. Saf. 71, 601–608 (2008).

    CAS  PubMed  Google Scholar 

  • 67.

    DeVault, T. L., Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Mesopredators dominate competition for carrion in an agricultural landscape. Basic Appl. Ecol. 12, 268–274 (2011).

    Google Scholar 

  • 68.

    Ratton, P., Secco, H. & da Rosa, C. A. Carcass permanency time and its implications to the roadkill data. Eur. J. Wildl. Res. 60, 543–546 (2014).

    Google Scholar 

  • 69.

    Santos, R. A. L. et al. Carcass persistence and detectability: reducing the uncertainty surrounding wildlife-vehicle collision surveys. PLoS ONE 11, e0165608 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Linz, G. M., Davis, J. E., Engeman, R. M., Otis, D. L. & Avery, M. L. Estimating survival of bird carcasses in Cattail Marshes. Wildl. Soc. Bull. 19, 195–199 (1991).

    Google Scholar 


  • Source: Ecology - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields