Shifts in the microbiota associated with male mosquitoes (Aedes aegypti) exposed to an obligate gut fungal symbiont (Zancudomyces culisetae)

  • 1.

    Coon, K. L., Brown, M. R. & Strand, M. R. Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasite Vector 9, 375 (2016).

    Google Scholar 

  • 2.

    Gaio, A. D. O. et al. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasite Vector 4, 105 (2011).

    Google Scholar 

  • 3.

    Bascuñán, P. et al. Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors. Microbiome 6, 148 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 4.

    Chandler, J. A., Liu, R. M. & Bennett, S. N. RNA shotgun metagenomic sequencing of Northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 6, 1–16 (2015).

    Google Scholar 

  • 5.

    Coon, K. L., Vogel, K. J., Brown, M. R. & Strand, M. R. Mosquitoes rely on their gut microbiota for development. Mol. Ecol. 23, 2727–2739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Gimonneau, G. et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect. Genet. Evol. 28, 715–724 (2014).

    PubMed  Google Scholar 

  • 7.

    Muturi, E. J. et al. Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasite Vector 9, 18 (2016).

    Google Scholar 

  • 8.

    Muturi, E. J., Ramirez, J. L., Rooney, A. P. & Kim, C. H. Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoS Negl. Trop. Dis. 11, e0005377 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Muturi, E. J. et al. Mosquito microbiota cluster by host sampling location. Parasite Vector 11, 468 (2018).

    Google Scholar 

  • 10.

    Osei-Poku, J., Mbogo, C. M., Palmer, W. J. & Jiggins, F. M. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol. Ecol. 21, 5138–5150 (2012).

    CAS  PubMed  Google Scholar 

  • 11.

    Wang, Y. et al. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE 6, 1–9 (2011).

    Google Scholar 

  • 12.

    Carissimo, G. et al. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc. Natl. Acad. Sci. 112, E176–E185 (2015).

    CAS  PubMed  Google Scholar 

  • 13.

    Dennison, N. J., Jupatanakul, N. & Dimopoulos, G. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect Sci. 3, 6–13 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Hegde, S., Rasgon, J. L. & Hughes, G. L. The microbiome modulates arbovirus transmission in mosquitoes. Curr. Opin. Virol. 15, 97–102 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Jupatanakul, N., Sim, S. & Dimopoulos, G. The insect microbiome modulates vector competence for arboviruses. Viruses 6, 4294–4313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Ramirez, J. L. et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl. Trop. Dis. 6, e1561 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Charan, S. S. et al. Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus. Parasitol. Res. 112, 2627–2637 (2013).

    PubMed  Google Scholar 

  • 18.

    Dickson, L. B. et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci. Adv. 3, e1700585 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Gonçalves, C. M. et al. Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasite Vector 7, 320 (2014).

    Google Scholar 

  • 20.

    Campos, S. S. et al. Zika virus can be venereally transmitted between Aedes aegypti mosquitoes. Parasite Vector 10, 605 (2017).

    Google Scholar 

  • 21.

    Sánchez-Vargas, I. et al. Demonstration of efficient vertical and venereal transmission of dengue virus type-2 in a genetically diverse laboratory strain of Aedes aegypti. PLOS Negl. Trop. D 12, e0006754 (2018).

    Google Scholar 

  • 22.

    Valiente Moro, C. V. et al. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol. 13, 70 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Zouache, K. et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol. Ecol. 75, 377–389 (2011).

    CAS  PubMed  Google Scholar 

  • 24.

    Foster, W. A. Mosquito sugar feeding and reproductive energetics. Annu. Rev. Entomol. 40, 443–474 (1995).

    CAS  PubMed  Google Scholar 

  • 25.

    Minard, G., Mavingui, P. & Moro, C. V. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasite Vector 6, 146–158 (2013).

    Google Scholar 

  • 26.

    Coon, K. L., Brown, M. R. & Strand, M. R. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol. Ecol. 25, 5806–5826 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Ponnusamy, L. et al. Diversity of bacterial communities in container habitats of mosquitoes. Microb. Ecol. 56, 593–603 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Yee, D. A., Allgood, D., Kneitel, J. M. & Kuehn, K. A. Constitutive differences between natural and artificial container mosquito habitats: vector communities, resources, microorganisms, and habitat parameters. J. Med. Entomol. 49, 482–491 (2012).

    CAS  PubMed  Google Scholar 

  • 29.

    Rani, A. et al. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. BMC Microbiol. 9, 96 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Guégan, M. et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6, 49 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Mancini, M. V. et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol. 18, 126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 32.

    Segata, N. et al. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarm-enriched microbial biomarkers. Sci. Rep. 6, 24207 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Rossi, P. et al. Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasite Vector 8, 278 (2015).

    Google Scholar 

  • 34.

    Tchioffo, M. T. et al. Dynamics of bacterial community composition in the malaria mosquito’s epithelia. Front. Microbiol. 6, 1500 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Moll, R. M. et al. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J. Med. Entomol. 38, 29–32 (2001).

    CAS  PubMed  Google Scholar 

  • 36.

    Moncayo, A. C. et al. Meconial peritrophic matrix structure, formation, and meconial degeneration in mosquito pupae/pharate adults: histological and ultrastructural aspects. J. Med. Entomol. 42, 939–944 (2005).

    PubMed  Google Scholar 

  • 37.

    Chavshin, A. R. et al. Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis. Symbiosis 60, 17–24 (2013).

    CAS  Google Scholar 

  • 38.

    Chavshin, A. R. et al. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasite Vector 8, 36 (2015).

    Google Scholar 

  • 39.

    Deveau, A. et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018).

    CAS  PubMed  Google Scholar 

  • 40.

    Alencar, Y. B., Ríos-Velásquez, C. M., Lichtwardt, R. W. & Hamada, N. Trichomycetes (Zygomycota) in the digestive tract of arthropods in Amazonas Brazil. Mem. Inst. Oswaldo Cruz. 98, 799–810 (2003).

    PubMed  Google Scholar 

  • 41.

    Angleró-Rodríguez, Y. I. et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife 6, e28844 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Ramirez, J. L. et al. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Negl. Trop. Dis. 12, e0006433 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Wei, G. et al. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. 114, 5994–5999 (2017).

    CAS  PubMed  Google Scholar 

  • 44.

    Frankel-Bricker, J., Buerki, S., Feris, K. P. & White, M. M. Influences of a prolific gut fungus (Zancudomyces culisetae) on larval and adult mosquito (Aedes aegypti)-associated microbiota. Appl. Environ. Microbiol. 86, e02334-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Lichtwardt, R. W. Species of Harpellales living within the guts of aquatic Diptera larvae. Mycotaxon 19, 529–550 (1984).

    Google Scholar 

  • 46.

    Williams, M. C. & Lichtwardt, R. W. Infection of Aedes aegypti larvae by axenic cultures of the fungal genus Smittium (trichomycetes). Am. J. Bot. 59, 189–193 (1972).

    Google Scholar 

  • 47.

    Horn, B. W. Ultrastructural changes in trichospores of Smittium culisetae and S. culicis during in vitro sporangiospore extrusion and holdfast formation. Mycologia 81, 742–753 (1989).

    Google Scholar 

  • 48.

    Horn, B. W. Physiological changes associated with sporangiospore extrusion from trichospores of Smittium culisetae. Exp. Mycol. 14, 113–123 (1990).

    Google Scholar 

  • 49.

    Karl, P. J. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    McCreadie, J. W. & Beard, C. E. The microdistribution of the trichomycete Smittium culisetae in the hindgut of the black fly host Simulium vittatum. Mycologia 95, 998–1003 (2003).

    PubMed  Google Scholar 

  • 51.

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Schloss, P. D. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio 9, e00525-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Frankel-Bricker, J., Song, M. J., Benner, M. J. & Schaack, S. Variation in the microbiota associated with Daphnia magna across genotypes, populations, and temperature. Microb Ecol. (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Sinha, R. et al. The microbiome quality control project: Baseline study design and future directions. Genome Biol. 16, 276 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Bahl, M. I., Bergström, A. & Licht, T. R. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol. Lett. 329, 193–197 (2012).

    CAS  PubMed  Google Scholar 

  • 57.

    Cardona, S. et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 12, 158 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Foggie, T. & Achee, N. Standard operating procedures: rearing Aedes aegypti for the HITSS and box laboratory assays training manual (2009).

  • 59.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS  PubMed  Google Scholar 

  • 60.

    Takahashi, S. et al. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 61.

    R Core Team. R: A Language Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (2019).

  • 62.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  Google Scholar 

  • 65.

    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS  PubMed  Google Scholar 

  • 66.

    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Davis, N. M. et al. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Google Scholar 

  • 70.

    Lüdecke, D. sjstats: statistical functions for regression models. (2017).

  • 71.

    Marwick, B. & Krishnamoorthy, K. cvequality: tests for the equality of coefficients of variation from multiple groups. (2016).

  • 72.

    Feltz, C. J. & Miller, G. E. An asymptotic test for the equality of coefficients of variation from k populations. Stat. Med. 15, 647–658 (1996).

    Google Scholar 

  • 73.

    Krishnamoorthy, K. & Lee, M. Improved tests for the equality of normal coefficients of variation. Comput. Stat. 29, 215–232 (2014).

    MathSciNet  MATH  Google Scholar 

  • 74.

    Kandlikar, G. S. et al. ranacapa: an R package and Shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000 Res. 7, 1734 (2018).

    Google Scholar 

  • 75.

    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online (2017).

    Article  Google Scholar 

  • 76.

    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).

    Google Scholar 

  • 77.

    Kindt, R. Package ‘ BiodiversityR .’ R Proj. (2016).

  • 78.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    PubMed  Google Scholar 

  • 79.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet  PubMed  MATH  Google Scholar 

  • 80.

    Bates, D. et al. Package “lme4”: linear mixed-effects models using “Eigen” and S4. J. Stat. Softw. (2015).

  • 81.

    Fox, J. et al. Package “car.” R Doc. (2018).

  • Source: Ecology -

    Study: A plunge in incoming sunlight may have triggered “Snowball Earths”

    A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey