in

Uncovering unique plasticity in life history of an endangered centenarian fish

  • 1.

    Ernande, B., Dieckmann, U. & Heino, M. Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation. Proc. R. Soc. Lond. B 271, 415–523 (2004).

    Google Scholar 

  • 2.

    Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K. & Relyea, R. A. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20, 685–692 (2005).

    PubMed  Google Scholar 

  • 3.

    Schmalhausen, I. I. Factors of Evolution: The Theory of Stabilizing Selection (Blakiston, Lymington, 1949).

    Google Scholar 

  • 4.

    Oomen, R. A. & Hutchings, J. A. Genetic variability in reaction norms in fishes. Environ. Rev. 23, 353–366 (2015).

    Google Scholar 

  • 5.

    Gordon, S. P., Hendry, A. P. & Reznick, D. N. Predator-induced contemporary evolution, phenotypic plasticity, and the evolution of reaction norms in guppies. Copeia 105, 514–522 (2017).

    Google Scholar 

  • 6.

    Olsen, E. M. et al. Small-scale biocomplexity in coastal Atlantic cod supporting a Darwinian perspective on fisheries management. Evol. Appl. 1, 524–533 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Reznick, D. N. Norms of reaction in fishes. In The Exploitation of Evolving Resources (eds Stokes, K. et al.) 72–90 (Springer, Berlin Heidelberg, 1993).

    Google Scholar 

  • 9.

    Trippel, E. A. Age at maturity as a stress indicator in fisheries. Bioscience 45, 759–771 (1995).

    Google Scholar 

  • 10.

    Mims, M. C. & Olden, J. D. Fish assemblages respond to altered flow regimes via ecological filtering of life history strategies. Freshw. Biol. 58, 50–62 (2013).

    Google Scholar 

  • 11.

    Bennett, M. G., Whiles, M. R. & Whitledge, G. W. Population-level responses of life history traits to flow regime in three common stream fish species. Ecohydrology 9, 1388–1399 (2016).

    Google Scholar 

  • 12.

    Congdon, J. D., Dunham, A. E., Hopkins, W. A., Rowe, C. L. & Hinton, T. G. Resource allocation-based life histories: A conceptual basis for studies of ecological toxicology. Environ. Toxicol. Chem. 20, 1698–1703 (2001).

    CAS  PubMed  Google Scholar 

  • 13.

    Walsh, M. R. & Reznick, D. N. Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. PNAS 105, 594–599 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Sokolova, I. M. Energy-Limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr Comp Biol 53, 597–608 (2013).

    PubMed  Google Scholar 

  • 15.

    Roff, D. A. The Evolution of Life History Parameters in Teleosts. Can. J. Fish. Aquat. Sci. 41, 989–1000 (1984).

    Google Scholar 

  • 16.

    Ward, H. G. M., Post, J. R., Lester, N. P., Askey, J. P. & Godin, T. Empirical evidence of plasticity in life-history characteristics across climatic and fish density gradients. Can. J. Fish. Aquat. Sci. 74, 464–474 (2016).

    Google Scholar 

  • 17.

    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).

    PubMed  Google Scholar 

  • 18.

    Alberto, F. et al. Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. J. Evol. Biol. 24, 1442–1454 (2011).

    CAS  PubMed  Google Scholar 

  • 19.

    Toräng, P. et al. Large-scale adaptive differentiation in the alpine perennial herb Arabis alpina. New Phytol. 206, 459–470 (2015).

    PubMed  Google Scholar 

  • 20.

    Sparks, M. M., Westley, P. A. H., Falke, J. A. & Quinn, T. P. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon. Glob. Change Biol. 23, 5203–5217 (2017).

    ADS  Google Scholar 

  • 21.

    Wright, P. J. Methodological challenges to examining the causes of variation in stock reproductive potential. Fish. Res. 138, 14–22 (2013).

    Google Scholar 

  • 22.

    Conover, D. O. & Baumann, H. PERSPECTIVE: The role of experiments in understanding fishery-induced evolution. Evol. Appl. 2, 276–290 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Nagrodski, A., Murchie, K. J., Stamplecoskie, K. M., Suski, C. D. & Cooke, S. J. Effects of an experimental short-term cortisol challenge on the behaviour of wild creek chub Semotilus atromaculatus in mesocosm and stream environments. J. Fish Biol. 82, 1138–1158 (2013).

    CAS  PubMed  Google Scholar 

  • 24.

    Winemiller, K. O. Life history strategies, population regulation, and implications for fisheries management. Can. J. Fish. Aquat. Sci. 62, 872–885 (2005).

    Google Scholar 

  • 25.

    Weeks, S. C. Phenotypic plasticity of life-history traits in clonal and sexual fish (Poeciliopsis) at high and low densities. Oecologia 93, 307–314 (1993).

    ADS  PubMed  Google Scholar 

  • 26.

    Ziegler, P. E., Lyle, J. M., Haddon, M. & Ewing, G. P. Rapid changes in life-history characteristics of a long-lived temperate reef fish. Mar. Freshwater Res. 58, 1096–1107 (2008).

    Google Scholar 

  • 27.

    Genner, M. J. et al. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob. Change Biol. 16, 517–527 (2010).

    ADS  Google Scholar 

  • 28.

    Wanner, G. A., Shuman, D. A. & Willis, D. W. Food habits of juvenile Pallid Sturgeon and adult Shovelnose Sturgeon in the Missouri River downstream of Fort Randall Dam, South Dakota. J. Freshw. Ecol. 22, 81–92 (2007).

    Google Scholar 

  • 29.

    Grohs, K. L., Klumb, R. A., Chipps, S. R. & Wanner, G. A. Ontogenetic patterns in prey use by Pallid Sturgeon in the Missouri River, South Dakota and Nebraska. J. Appl. Ichthyol. 25, 48–53 (2009).

    Google Scholar 

  • 30.

    Gerrity, P. C., Guy, C. S. & Gardner, W. M. Juvenile Pallid Sturgeon are piscivorous: a call for conserving native cyprinids. Trans. Am. Fish. Soc. 135, 604–609 (2006).

    Google Scholar 

  • 31.

    Keenlyne, K. D., Grossman, E. M. & Jenkins, L. G. Fecundity of the Pallid Sturgeon. Trans. Am. Fish. Soc. 121, 139–140 (1992).

    Google Scholar 

  • 32.

    Koch, J. D., Steffensen, K. D. & Pegg, M. A. Validation of age estimates obtained from juvenile Pallid Sturgeon Scaphirhynchus albus pectoral fin spines. J. Appl. Ichthyol. 27, 209–212 (2011).

    Google Scholar 

  • 33.

    Hamel, M. J. et al. Using mark–recapture information to validate and assess age and growth of long-lived fish species. Can. J. Fish. Aquat. Sci. 71, 559–566 (2014).

    Google Scholar 

  • 34.

    Braaten, P. J. et al. Age estimations of wild Pallid Sturgeon (Scaphirhynchus albus, Forbes & Richardson 1905) based on pectoral fin spines, otoliths and bomb radiocarbon: inferences on recruitment in the dam-fragmented Missouri River. J. Appl. Ichthyol. 31, 821–829 (2015).

    Google Scholar 

  • 35.

    Keenlyne, K. D. & Jenkins, L. G. Age at sexual maturity of the Pallid Sturgeon. Trans. Am. Fish. Soc. 122, 393–396 (1993).

    Google Scholar 

  • 36.

    Dryer, M. P. & Sandvol, A. J. Pallid Sturgeon recovery plan (United States Fish and Wildlife Service, Bismarck, North Dakota, 1990).

    Google Scholar 

  • 37.

    Bramblett, R. G. & White, R. G. Habitat use and movements of Pallid and Shovelnose Sturgeon in the Yellowstone and Missouri Rivers in Montana and North Dakota. Trans. Am. Fish. Soc. 130, 1006–1025 (2001).

    Google Scholar 

  • 38.

    Jordan, G. R. et al. Status of knowledge of the Pallid Sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905). J. Appl. Ichthyol. 32, 191–207 (2016).

    Google Scholar 

  • 39.

    Hesse, L. W. Taming the wild Missouri River: what has it cost?. Fisheries 12, 2–9 (1987).

    Google Scholar 

  • 40.

    Latka, D. C., Nestler, J. & Hesse, L. W. Restoring physical habitat in the Missouri River: a historical perspective. In Restoration Planning for the River of the Missouri River Ecosystem (eds Hesse, L. W. et al.) 350–359 (Biological Report 19, National Biological Survey, Washington, D.C., 1993).

    Google Scholar 

  • 41.

    Yager, L. A., Dixon, M. D., Cowman, T. C. & Soluk, D. A. Historic changes (1941–2008) in side channel and backwater habitats on an unchannelized reach of the Missouri River. River Res. Appl. 29, 493–501 (2013).

    Google Scholar 

  • 42.

    Galat, D. L. & Lipkin, R. Restoring ecological integrity of great rivers: historical hydrographs aid in defining reference conditions for the Missouri River. In Assessing the Ecological Integrity of Running Waters. Developments in Hydrobiology (eds Jungwirth, M. et al.) 29–48 (Springer, Dordrecht, 2000).

    Google Scholar 

  • 43.

    Welker, T. L. & Drobish, M. R. Pallid Sturgeon population assessment project. United States Army Corps of Engineers, Omaha District, Volume 1.6 Yankton (SD) (2016).

  • 44.

    Wildhaber, M. L., Albers, J. L., Green, N. S. & Moran, E. H. A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered Pallid Sturgeon example. Ecol. Model. 359, 434–448 (2017).

    Google Scholar 

  • 45.

    Schrey, A. W. & Heist, E. J. Stock structure of Pallid Sturgeon analyzed with microsatellite loci. J. Appl. Ichthyol. 23, 297–303 (2007).

    Google Scholar 

  • 46.

    Eichelberger, J. S., Braaten, P. J., Fuller, D. B., Krampe, M. S. & Heist, E. J. Novel single-nucleotide polymorphism markers confirm successful spawning of endangered Pallid Sturgeon in the upper Missouri River basin. Trans. Am. Fish. Soc. 143, 1373–1385 (2014).

    CAS  Google Scholar 

  • 47.

    Hamel, M. J. et al. Range-wide age and growth characteristics of shovelnose sturgeon from mark–recapture data: implications for conservation and management. Can. J. Fish. Aquat. Sci. 72, 71–82 (2014).

    Google Scholar 

  • 48.

    Fabens, A. J. Properties and fitting of the von Bertalanffy growth curve. Growth 29, 265–289 (1965).

    CAS  PubMed  Google Scholar 

  • 49.

    Isely, J. J. & Grabowski, T. B. Age and growth. In Analysis and Interpretation of Freshwater Fisheries Data (eds Guy, C. S. & Brown, M. L.) 187–228 (American Fisheries Society, Bethesda, 2007).

    Google Scholar 

  • 50.

    Pauly, D. Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy’s growth formula. Ber. Inst. F. Meereskunde Univ. Kiel., No. 63 (1979)

  • 51.

    Kirkwood, G. P. Estimation of von Bertalanffy growth curve parameters using both length increment and age–length data. Can. J. Fish. Aquat. Sci. 40, 1405–1411 (1983).

    Google Scholar 

  • 52.

    Hewitt, D. A. & Hoenig, J. M. Comparison of two approaches for estimating natural mortality based on longevity. Fish. Bull. 6, 433 (2005).

    Google Scholar 

  • 53.

    Seber, G. A. F. The Estimation of Animal Abundance and Related Parameters 2nd edn. (MacMillian, New York, 1982).

    Google Scholar 

  • 54.

    Steffensen, K. D., Pegg, M. A. & Mestl, G. E. Population characteristics of Pallid Sturgeon (Scaphirhynchus albus (Forbes & Richardson)) in the Lower Missouri River. J. Appl. Ichthyol. 29, 687–695 (2013).

    Google Scholar 

  • 55.

    Holmquist, L. M., Guy, C. S., Tews, A. & Webb, M. A. H. First maturity and spawning periodicity of hatchery-origin Pallid Sturgeon in the upper Missouri River above Fort Peck Reservoir, Montanna. J. Appl. Ichthyol. 35, 138–148 (2019).

    Google Scholar 

  • 56.

    Pegg, M. A., Pierce, C. L. & Roy, A. Hydrological alteration along the Missouri River Basin: a time series approach. Aquat. Sci. 65, 63–72 (2003).

    Google Scholar 

  • 57.

    Jacobson, R. B. & Galat, D. L. Flow and form in rehabilitation of large-river ecosystems: an example from the Lower Missouri River. Geomorphology 77, 249–269 (2006).

    ADS  Google Scholar 

  • 58.

    McEwen, B. S. & Wingfield, J. C. The concept of allostasis in biology and biomedicine. Horm. Behav. 43, 2–15 (2003).

    PubMed  Google Scholar 

  • 59.

    Olsen, E. M. et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932–935 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 60.

    Kopp, M. & Matuszewski, S. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 7, 169–191 (2014).

    PubMed  Google Scholar 

  • 61.

    Phillis, C. C. et al. Shifting thresholds: rapid evolution of migratory life histories in Steelhead/Rainbow Trout Oncorhynchus mykiss. J. Hered. 107, 51–60 (2016).

    PubMed  Google Scholar 

  • 62.

    Bell, G. The costs of reproduction and their consequences. Am. Nat. 116, 45–76 (1980).

    Google Scholar 

  • 63.

    Wright, P. J. & Trippel, E. A. Fishery-induced demographic changes in the timing of spawning: consequences for reproductive success*. Fish Fish. 10, 283–304 (2009).

    Google Scholar 

  • 64.

    Steffensen, K. D., Hamel, M. J. & Spurgeon, J. J. Post-stocking Pallid Sturgeon Scaphirhynchus albus growth, dispersal, and survival in the lower Missouri River. J. Appl. Ichthyol. 35, 117–127 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Study: A plunge in incoming sunlight may have triggered “Snowball Earths”

    A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey