in

Blue water footprint linked to national consumption and international trade is unsustainable

[adace-ad id="91168"]
  • 1.

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    WWAP The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).

  • 3.

    Shiklomanov, I. A. Appraisal and assessment of world water resources. Water Int. 25, 11–32 (2000).

    Google Scholar 

  • 4.

    Srinivasan, V., Lambin, E. F., Gorelick, S. M., Thompson, B. H. & Rozelle, S. The nature and causes of the global water crisis: syndromes from a meta-analysis of coupled human–water studies. Water Resour. Res. 48, W10516 (2012).

    ADS  Google Scholar 

  • 5.

    Coe, M. T. & Foley, J. A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res. 106, 3349–3356 (2001).

    ADS  Google Scholar 

  • 6.

    Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, W00L06 (2012).

    Google Scholar 

  • 8.

    Richter, B. Chasing Water: A Guide for Moving from Scarcity to Sustainability (Island, 2014).

  • 9.

    Richter, B. D. et al. Water scarcity and fish imperilment driven by beef production. Nat. Sustain. 3, 319–328 (2020).

    Google Scholar 

  • 10.

    Dudgeon, D. Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Curr. Opin. Environ. Sustain. 2, 422–430 (2010).

    Google Scholar 

  • 11.

    Hanasaki, N. et al. An integrated model for the assessment of global water resources – Part 2: applications and assessments. Hydrol. Earth Syst. Sci. 12, 1027–1037 (2008).

    ADS  Google Scholar 

  • 12.

    Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. Water Resour. Res. 47, W07518 (2011).

    ADS  Google Scholar 

  • 13.

    Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Brauman, K. A., Richter, B. D., Postel, S., Malsy, M. & Flörke, M. Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa https://doi.org/10.12952/journal.elementa.000083 (2016).

  • 15.

    Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    ADS  PubMed  Google Scholar 

  • 17.

    Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Burek, P. et al. Water Futures and Solution – Fast Track Initiative (Final Report) (IIASA, 2016).

  • 19.

    Alcamo, J. et al. Global estimates of water withdrawals and availability under current and future ‘business-as-usual’ conditions. Hydrol. Sci. J. 48, 339–348 (2003).

    Google Scholar 

  • 20.

    WWAP The United Nations World Water Development Report 2019: Leaving No One Behind (UNESCO, 2019).

  • 21.

    Vörösmarty, C. J., Hoekstra, A. Y., Bunn, S. E., Conway, D. & Gupta, J. Fresh water goes global. Science 349, 478–479 (2015).

    ADS  PubMed  Google Scholar 

  • 22.

    Hoekstra, A. Y. & Chapagain, A. K. Globalization of Water: Sharing the Planet’s Freshwater Resources (Blackwell, 2008).

  • 23.

    Hoekstra, A. Y. The global dimension of water governance: why the river basin approach is no longer sufficient and why cooperative action at global level is needed. Water 3, 21–46 (2011).

    Google Scholar 

  • 24.

    Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).

    CAS  PubMed  Google Scholar 

  • 25.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Allan, J. A. Virtual water: a strategic resource: global solutions to regional deficits. Groundwater 36, 545–546 (1998).

    CAS  Google Scholar 

  • 27.

    Lenzen, M. et al. International trade of scarce water. Ecol. Econ. 94, 78–85 (2013).

    Google Scholar 

  • 28.

    Hoekstra, A. Y. Water footprint assessment: evolvement of a new research field. Water Resour. Manag. 31, 3061–3081 (2017).

    Google Scholar 

  • 29.

    Boulay, A. M., Hoekstra, A. Y. & Vionnet, S. Complementarities of water-focused life cycle assessment and water footprint assessment. Environ. Sci. Technol. 47, 11926–11927 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 30.

    Hoekstra, A. Y. A critique on the water-scarcity weighted water footprint in LCA. Ecol. Indic. 66, 564–573 (2016).

    Google Scholar 

  • 31.

    Pfister, S. et al. Understanding the LCA and ISO water footprint: a response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA’. Ecol. Indic. 72, 352–359 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Chenoweth, J., Hadjikakou, M. & Zoumides, C. Quantifying the human impact on water resources: a critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 18, 2325–2342 (2014).

    ADS  Google Scholar 

  • 33.

    Dolganova, I. et al. The water footprint of European agricultural imports: hotspots in the context of water scarcity. Resources 8, 141 (2019).

    Google Scholar 

  • 34.

    Finogenova, N. et al. Water footprint of German agricultural imports: local impacts due to global trade flows in a fifteen-year perspective. Sci. Total Environ. 662, 521–529 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 35.

    Feng, K., Hubacek, K., Pfister, S., Yu, Y. & Sun, L. Virtual scarce water in China. Environ. Sci. Technol. 48, 7704–7713 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Yano, S., Hanasaki, N., Itsubo, N. & Oki, T. Water scarcity footprints by considering the differences in water sources. Sustainability 7, 9753 (2015).

    Google Scholar 

  • 37.

    Hoekstra, A. Y. & Chapagain, A. K. Water footprints of nations: water use by people as a function of their consumption pattern. Water Resour. Manag. 21, 35–48 (2007).

    Google Scholar 

  • 38.

    Fader, M. et al. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade. Hydrol. Earth Syst. Sci. 15, 1641–1660 (2011).

    ADS  Google Scholar 

  • 39.

    Chen, Z.-M. & Chen, G. Q. Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol. Indic. 28, 142–149 (2013).

    Google Scholar 

  • 40.

    Wang, R. & Zimmerman, J. Hybrid analysis of blue water consumption and water scarcity implications at the global, national, and basin levels in an increasingly globalized world. Environ. Sci. Technol. 50, 5143–5153 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 41.

    Vanham, D. The water footprint of the EU: quantification, sustainability and relevance. Water Int. 43, 731–745 (2018).

    Google Scholar 

  • 42.

    Galli, A. et al. Integrating ecological, carbon and water footprint into a ‘Footprint Family’ of indicators: definition and role in tracking human pressure on the planet. Ecol. Indic. 16, 100–112 (2012).

    Google Scholar 

  • 43.

    Ercin, E., Chico, D. & Chapagain, A. K. Vulnerabilities of the European Union’s economy to hydrological extremes outside its borders. Atmosphere 10, 593 (2019).

    ADS  Google Scholar 

  • 44.

    Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin, China: a consumption based approach. Appl. Geogr. 32, 691–701 (2012).

    Google Scholar 

  • 45.

    Zhuo, L., Mekonnen, M. M. & Hoekstra, A. Y. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: a study for China (1978–2008). Water Res. 94, 73–85 (2016).

    CAS  PubMed  Google Scholar 

  • 46.

    Rushforth, R. R. & Ruddell, B. L. A spatially detailed blue water footprint of the United States economy. Hydrol. Earth Syst. Sci. 22, 3007–3032 (2018).

    ADS  Google Scholar 

  • 47.

    Hou, S. et al. Blue and green water footprint assessment for China—a multi-region input–output approach. Sustainability 10, 2822 (2018).

    Google Scholar 

  • 48.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 50.

    Marston, L., Konar, M., Cai, X. & Troy, T. J. Virtual groundwater transfers from overexploited aquifers in the United States. Proc. Natl Acad. Sci. USA 112, 8561–8566 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 51.

    Siebert, S. et al. Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci. Discuss. 7, 3977–4021 (2010).

    ADS  Google Scholar 

  • 52.

    Rosa, L., Chiarelli, D. D., Tu, C., Rulli, M. C. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).

    ADS  CAS  Google Scholar 

  • 53.

    Qu, S. et al. Virtual water scarcity risk to the global trade system. Environ. Sci. Technol. 52, 673–683 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Liu, W. et al. Savings and losses of global water resources in food-related virtual water trade. WIREs Water 6, e1320 (2019).

    Google Scholar 

  • 55.

    Han, M. Y., Chen, G. Q. & Li, Y. L. Global water transfers embodied in international trade: tracking imbalanced and inefficient flows. J. Clean. Prod. 184, 50–64 (2018).

    Google Scholar 

  • 56.

    Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. Recent history and geography of virtual water trade. PLoS ONE 8, e55825 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. On the temporal variability of the virtual water network. Geophys. Res. Lett. 39, L06404 (2012).

    ADS  Google Scholar 

  • 58.

    Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 48, W07509 (2012).

    ADS  Google Scholar 

  • 59.

    Hoekstra, A. Y. & Mekonnen, M. M. Imported water risk: the case of the UK. Environ. Res. Lett. 11, 055002 (2016).

    ADS  Google Scholar 

  • 60.

    Richter, B. D., Davis, M. M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 28, 1312–1321 (2012).

    Google Scholar 

  • 61.

    Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).

  • 62.

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 63.

    Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170 (2010).

    Google Scholar 

  • 64.

    Tessmann, S. A. in Environmental Use Sector: Reconnaissance Elements of the Western Dakotas Region of South Dakota Study (Water Resources Institute, South Dakota State Univ., 1980).

  • 65.

    Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. Proc. Natl Acad. Sci. USA 112, 6902–6907 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 66.

    Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ. Res. Lett. 8, 024030 (2013).

    ADS  Google Scholar 

  • 67.

    Mekonnen, M. M., Hoekstra, A. Y., Neale, C. M. U., Ray, C. & Yang, H. S. Water productivity benchmarks: the case of maize and soybean in Nebraska. Agric. Water Manag. 234, 106122 (2020).

    Google Scholar 

  • 68.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Hoekstra, A. Y. Water for animal products: a blind spot in water policy. Environ. Res. Lett. 9, 091003 (2014).

    ADS  Google Scholar 

  • 71.

    Mekonnen, M. M. & Fulton, J. The effect of diet changes and food loss reduction in reducing the water footprint of an average American. Water Int. 43, 860–870 (2018).

    Google Scholar 

  • 72.

    Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 73.

    Rockström, J. et al. Managing water in rainfed agriculture—the need for a paradigm shift. Agric. Water Manag. 97, 543–550 (2010).

    Google Scholar 

  • 74.

    Chukalla, A. D., Krol, M. S. & Hoekstra, A. Y. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 19, 4877–4891 (2015).

    ADS  CAS  Google Scholar 

  • 75.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 76.

    Mekonnen, M. M. & Hoekstra, A. Y. Water footprint benchmarks for crop production: a first global assessment. Ecol. Indic. 46, 214–223 (2014).

    Google Scholar 

  • 77.

    Vanham, D., Mekonnen, M. M. & Hoekstra, A. Y. The water footprint of the EU for different diets. Ecol. Indic. 32, 1–8 (2013).

    Google Scholar 

  • 78.

    West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 79.

    Mekonnen, M. & Hoekstra, A. A global assessment of the water footprint of farm animal products. Ecosystems 15, 401–415 (2012).

    CAS  Google Scholar 

  • 80.

    Mekonnen, M. M. et al. Water, energy, and carbon footprints of bioethanol from the U.S. and Brazil. Environ. Sci. Technol. 52, 14508–14518 (2018).

    ADS  CAS  PubMed  Google Scholar 


  • Source: Resources - nature.com

    A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis

    Case studies show climate variation linked to rise and fall of medieval nomadic empires