in

Dust dominates high-altitude snow darkening and melt over high-mountain Asia

[adace-ad id="91168"]
  • 1.

    Yao, T. et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 100, 423–444 (2018).

    Google Scholar 

  • 2.

    Armstrong, R. L. et al. Runoff from glacier ice and seasonal snow in High Asia: separating melt water sources in river flow. Reg. Environ. Chang. 19, 1249–1261 (2019).

    Google Scholar 

  • 3.

    Guo, J. et al. Linking atmospheric pollution to cryospheric change in the third pole region: current progresses and future prospects. Natl Sci. Rev. 6, 796–809 (2019).

    Google Scholar 

  • 4.

    Bolch, T. et al. in The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People (eds Wester, P. et al.) 209–255 (Springer, 2019).

  • 5.

    Smith, T. & Bookhagen, B. Changes in seasonal snow water equivalent distribution in high mountain Asia (1987 to 2009). Sci. Adv. 4, e1701550 (2018).

    Google Scholar 

  • 6.

    IPCC Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 33 (Cambridge Univ. Press, 2014).

  • 7.

    Painter, T. H., Seidel, F. C., Bryant, A. C., McKenzie Skiles, S. & Rittger, K. Imaging spectroscopy of albedo and radiative forcing by light-absorbing impurities in mountain snow. J. Geophys. Res. Atmos. 118, 9511–9523 (2013).

    Google Scholar 

  • 8.

    Qian, Y. et al. Light-absorbing particles in snow and ice: measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci. 32, 64–91 (2015).

    CAS  Google Scholar 

  • 9.

    McKenzie Skiles, S. & Painter, T. H. Assessment of radiative forcing by light-absorbing particles in snow from in situ observations with radiative transfer modeling. J. Hydrometeorol. 19, 1397–1409 (2018).

    Google Scholar 

  • 10.

    Qian, Y., Flanner, M. G., Leung, L. R. & Wang, W. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys. 11, 1929–1948 (2011).

    CAS  Google Scholar 

  • 11.

    Gautam, R., Hsu, N. C., Lau, W. K. M. & Yasunari, T. J. Satellite observations of desert dust-induced Himalayan snow darkening. Geophys. Res. Lett. 40, 988–993 (2013).

    Google Scholar 

  • 12.

    Yasunari, T. J. et al. Estimated range of black carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods. Atmos. Environ. 78, 259–267 (2013).

    CAS  Google Scholar 

  • 13.

    Nair, V. S. et al. Black carbon aerosols over the Himalayas: direct and surface albedo forcing. Tellus B Chem. Phys. Meteorol. 65, 19738 (2013).

    Google Scholar 

  • 14.

    Ménégoz, M. et al. Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations. Atmos. Chem. Phys. 14, 4237–4249 (2014).

    Google Scholar 

  • 15.

    Ming, J. et al. Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys. 8, 1343–1352 (2008).

    CAS  Google Scholar 

  • 16.

    Usha, K. H., Nair, V. S. & Babu, S. S. Modeling of aerosol induced snow albedo feedbacks over the Himalayas and its implications on regional climate. Clim. Dyn. 54, 4191–4210 (2020).

    Google Scholar 

  • 17.

    Sarangi, C. et al. Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: high-resolution WRF-Chem modeling and new satellite observations. Atmos. Chem. Phys. 19, 7105–7128 (2019).

    CAS  Google Scholar 

  • 18.

    Svensson, J. et al. Light-absorption of dust and elemental carbon in snow in the Indian Himalayas and the Finnish Arctic. Atmos. Meas. Tech. 11, 1403–1416 (2018).

    CAS  Google Scholar 

  • 19.

    Kaspari, S., Painter, T. H., Gysel, M., Skiles, S. M. & Schwikowski, M. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos. Chem. Phys. 14, 8089–8103 (2014).

    Google Scholar 

  • 20.

    Bonasoni, P. et al. Atmospheric brown clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmos. Chem. Phys. 10, 7515–7531 (2010).

    CAS  Google Scholar 

  • 21.

    Vaishya, A. et al. Large contrast in the vertical distribution of aerosol optical properties and radiative effects across the Indo-Gangetic Plain during the SWAAMI–RAWEX campaign. Atmos. Chem. Phys. 18, 17669–17685 (2018).

    CAS  Google Scholar 

  • 22.

    Sarangi, C., Tripathi, S. N., Mishra, A. K., Goel, A. & Welton, E. J. Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period. J. Geophys. Res. Atmos. 121, 7936-7957 (2016).

  • 23.

    Gautam, R., Hsu, N. C. & Lau, K.-M. Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: implications for regional climate warming. J. Geophys. Res.—Atmos. 115, D17208 (2010).

    Google Scholar 

  • 24.

    Mishra, A. K. & Shibata, T. Climatological aspects of seasonal variation of aerosol vertical distribution over central Indo-Gangetic belt (IGB) inferred by the space-borne lidar CALIOP. Atmos. Environ. 46, 365–375 (2012).

    CAS  Google Scholar 

  • 25.

    Liu, Z. et al. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys. 8, 5045–5060 (2008).

    CAS  Google Scholar 

  • 26.

    Das, S., Dey, S., Dash, S. K. & Basil, G. Examining mineral dust transport over the Indian subcontinent using the regional climate model, RegCM4.1. Atmos. Res. 134, 64–76 (2013).

    CAS  Google Scholar 

  • 27.

    Warren, S. G. & Wiscombe, W. J. A model for the spectral albedo of snow. II: snow containing atmospheric aerosols. J. Atmos. Sci. 37, 2734–2745 (1980).

    Google Scholar 

  • 28.

    Warren, S. G. Optical properties of snow. Rev. Geophys. 20, 67–89 (1982).

    Google Scholar 

  • 29.

    Dang, C., Fu, Q. & Warren, S. G. Effect of snow grain shape on snow albedo. J. Atmos. Sci. 73, 3573–3583 (2016).

    Google Scholar 

  • 30.

    Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA 101, 423–428 (2004).

    CAS  Google Scholar 

  • 31.

    Painter, T. H. et al. Response of Colorado River runoff to dust radiative forcing in snow. Proc. Natl Acad. Sci. USA 107, 17125–17130 (2010).

    CAS  Google Scholar 

  • 32.

    Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C. & Landry, C. C. Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resour. Res. 48, W07522 (2012).

    Google Scholar 

  • 33.

    Skiles, S. M. K. & Painter, T. Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J. Glaciol. 63, 118–132 (2017).

    Google Scholar 

  • 34.

    Di Mauro, B. et al. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J. Geophys. Res. Atmos. 120, 6080–6097 (2015).

    Google Scholar 

  • 35.

    Dumont, M. et al. In situ continuous visible and near-infrared spectroscopy of an alpine snowpack. Cryosph. 11, 1091–1110 (2017).

    Google Scholar 

  • 36.

    Huang, J. et al. Dust and black carbon in seasonal snow across northern China. Bull. Am. Meteorol. Soc. 92, 175–181 (2010).

    Google Scholar 

  • 37.

    Wang, X. et al. Observations and model simulations of snow albedo reduction in seasonal snow due to insoluble light-absorbing particles during 2014 Chinese survey. Atmos. Chem. Phys. 17, 2279–2296 (2017).

    CAS  Google Scholar 

  • 38.

    Zhang, Y. et al. Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosph. 12, 413–431 (2018).

    Google Scholar 

  • 39.

    Warren, S. G. Can black carbon in snow be detected by remote sensing? J. Geophys. Res. Atmos. 118, 779–786 (2013).

    CAS  Google Scholar 

  • 40.

    Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. Atmos. 112, D11202 (2007).

    Google Scholar 

  • 41.

    Doherty, S. J. et al. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J. Geophys. Res. Atmos. 118, 5553–5569 (2013).

    Google Scholar 

  • 42.

    Painter, T. H., Bryant, A. C. & McKenzie Skiles, S. Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett. 39, L17502 (2012).

    Google Scholar 

  • 43.

    Hadley, O. L. & Kirchstetter, T. W. Black-carbon reduction of snow albedo. Nat. Clim. Chang. 2, 437–440 (2012).

    CAS  Google Scholar 

  • 44.

    Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668 (2017).

    CAS  Google Scholar 

  • 45.

    Zhao, H., Yang, W., Yao, T., Tian, L. & Xu, B. Dramatic mass loss in extreme high-elevation areas of a western Himalayan glacier: observations and modeling. Sci. Rep. 6, 30706 (2016).

    CAS  Google Scholar 

  • 46.

    Ji, Z. M. Modeling black carbon and its potential radiative effects over the Tibetan Plateau. Adv. Clim. Chang. Res. 7, 139–144 (2016).

    Google Scholar 

  • 47.

    Xu, J. et al. The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 23, 520–530 (2009).

    CAS  Google Scholar 

  • 48.

    Ghatak, D., Sinsky, E. & Miller, J. Role of snow-albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia. Environ. Res. Lett. 9, 114008 (2014).

  • 49.

    Bormann, K. J., Brown, R. D., Derksen, C. & Painter, T. H. Estimating snow-cover trends from space. Nat. Clim. Change 8, 924–928 (2018).

    Google Scholar 

  • 50.

    Ming, J., Xiao, C., Du, Z. & Yang, X. An overview of black carbon deposition in High Asia glaciers and its impacts on radiation balance. Adv. Water Resour. 55, 80–87 (2013).

    CAS  Google Scholar 

  • 51.

    Painter, T. H. et al. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 113, 868–879 (2009).

    Google Scholar 

  • 52.

    Rittger, K., Painter, T. H. & Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 51, 367–380 (2013).

    Google Scholar 

  • 53.

    Dozier, J., Painter, T. H., Rittger, K. & Frew, J. E. Time–space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv. Water Resour. 31, 1515–1526 (2008).

    Google Scholar 

  • 54.

    Rittger, K., Bair, E. H., Kahl, A. & Dozier, J. Spatial estimates of snow water equivalent from reconstruction. Adv. Water Resour. 94, 345–363 (2016).

    Google Scholar 

  • 55.

    Chand, D. et al. Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing. J. Geophys. Res. Atmos. 113, D13206 (2008).

    Google Scholar 

  • 56.

    Winker, D. M. et al. The CALIPSO mission. Bull. Am. Meteorol. Soc. 91, 1211–1230 (2010).

    Google Scholar 

  • 57.

    Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Google Scholar 

  • 58.

    Molod, A., Takacs, L., Suarez, M. & Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8, 1339–1356 (2015).

    Google Scholar 

  • 59.

    Buchard, V. et al. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis. Atmos. Chem. Phys. 15, 5743–5760 (2015).

    CAS  Google Scholar 

  • 60.

    Derber, J. C., Parrish, D. F. & Lord, S. J. The New Global Operational Analysis System at the National Meteorological Center. Weather Forecast. 6, 538–547 (1991).

    Google Scholar 

  • 61.

    Herman, J. R. et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. Atmos. 102, 16911–16922 (1997).

    CAS  Google Scholar 

  • 62.

    Huang, J., Ge, J. & Weng, F. Detection of Asia dust storms using multisensor satellite measurements. Remote Sens. Environ. 110, 186–191 (2007).

    Google Scholar 

  • 63.

    Sun, H., Liu, X. & Pan, Z. Direct radiative effects of dust aerosols emitted from the Tibetan Plateau on the East Asian summer monsoon—a regional climate model simulation. Atmos. Chem. Phys. 17, 13731–13745 (2017).

    CAS  Google Scholar 

  • 64.

    Zaveri, R. A., Easter, R. C., Fast, J. D. & Peters, L. K. Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res. Atmos. 113, D13204 (2008).

    Google Scholar 

  • 65.

    Flanner, M. G., Liu, X., Zhou, C., Penner, J. E. & Jiao, C. Enhanced solar energy absorption by internally-mixed black carbon in snow grains. Atmos. Chem. Phys. 12, 4699–4721 (2012).

    CAS  Google Scholar 

  • 66.

    Zhao, C. et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements. Atmos. Chem. Phys. 14, 11475–11491 (2014).

    Google Scholar 


  • Source: Resources - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form