in

Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

[adace-ad id="91168"]
  • 1.

    Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013).

    ADS  Article  Google Scholar 

  • 2.

    Michael, H. A., Post, V. E., Wilson, A. M. & Werner, A. D. Science, society, and the coastal groundwater squeeze. Water Resour. Res. 53, 2610–2617 (2017).

    ADS  Article  Google Scholar 

  • 3.

    U.S. Census Bureau. Coastline Population Trends in the United States: 1960 to 2008. https://www.census.gov/prod/2010pubs/p25-1139.pdf (2010). Accessed 11 July 2019.

  • 4.

    Bear, J. et al. (eds) Seawater Intrusion in Coastal Aquifers: Concepts, Methods and Practices, Vol. 14 (Springer Science & Business Media, 1999).

  • 5.

    Foster, S. S. D. & Chilton, P. J. Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. B 358, 1957–1972 (2003).

    CAS  Article  Google Scholar 

  • 6.

    Strack, O. D. L. A single‐potential solution for regional interface problems in coastal aquifers. Water Resour. Res. 12, 1165–117 (1976).

    ADS  Article  Google Scholar 

  • 7.

    Koussis, A. D., Mazi, K., Riou, F. & Destouni, G. A correction for Dupuit–Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers. J. Hydrol. 525, 277–285 (2015).

    ADS  Article  Google Scholar 

  • 8.

    Lu, C., Xin, P., Kong, J., Li, L. & Luo, J. Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers. Water Resour. Res. 52, 6989–7004 (2016).

    ADS  Article  Google Scholar 

  • 9.

    Barlow, P. M. & Reichard, E. G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 18, 247–260 (2010).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Ferguson, G. & Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2, 342–345 (2012).

    ADS  Article  Google Scholar 

  • 11.

    Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353, 705–707 (2016).

    ADS  CAS  Article  Google Scholar 

  • 12.

    Vaccaro, J. J., Hansen, A. J. & Jones, M. A. Hydrogeologic Framework of the Puget Sound Aquifer System, Washington and British Columbia. US Geological Survey Professional Report 1424-D. https://pubs.usgs.gov/pp/1424d/report.pdf (1998).

  • 13.

    Jones, M. A. Geologic Framework of the Puget Sound Aquifer System, Washington and British Columbia. US Geological Survey Professional Report 1424-C. https://pubs.er.usgs.gov/publication/pp1424C (1999).

  • 14.

    Paulson, A. J. et al. Freshwater and Saline Loads of Dissolved Inorganic Nitrogen to Hood Canal and Lynch Cove, Western Washington. US Geological Survey Scientific Investigations Report 2006-5106. https://pubs.usgs.gov/sir/2006/5106/ (2006).

  • 15.

    Salinas Valley Basin Groundwater Sustainability Agency and Montgomery and Associates. Salinas Valley: Valley-Wide Integrated Groundwater Sustainability Plan. 1947 pp. https://svbgsa.org/wp-content/uploads/2020/01/SVBGSA-Combined-GSP-2020-0123-optimized.pdf (2020).

  • 16.

    Monterey County Resource Management Agency and Brown and Caldwell. State of the Salinas River Groundwater Basin. 240 pp. https://www.co.monterey.ca.us/home/showdocument?id=19586 (2015).

  • 17.

    Monterey County Water Resources Agency. Monterey County Groundwater Management Plan, 78 pp. https://water.ca.gov/LegacyFiles/groundwater/docs/GWMP/CC-3_MontereyCoWRA_GWMP_2006.pdf (2006).

  • 18.

    Edwards, B. D. & Evans, K. R. Saltwater Intrusion in Los Angeles Area Coastal Aquifers—the Marine Connection. U.S. Geological Survey Fact Sheet 030-02. https://pubs.usgs.gov/fs/old.2002/fs030-02/ (2002).

  • 19.

    Land, M. et al. Ground-water Quality of Coastal Aquifer Systems in the West Coast Basin, Los Angeles County, California, 1999–2002. U.S. Geological Survey Scientific Investigations Report 2004-5067, 88 pp. https://pubs.usgs.gov/sir/2004/5067/sir2004-5067.pdf (2004).

  • 20.

    Murgulet, D. & Tick, G. The extent of saltwater intrusion in southern Baldwin County, Alabama. Environ. Geol. 55, 1235–1245 (2008).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Braun, C. L., Ramage, J. K. & Shah, S. D. Status of Groundwater-level Altitudes and Long-term Groundwater-level Changes in the Chicot, Evangeline, and Jasper Aquifers, Houston-Galveston Region, Texas, 2019. U.S. Geological Survey Scientific Investigations Report 2019-5089, 18 pp. https://doi.org/10.3133/sir20195089 (2019).

  • 22.

    Borrok, D. M. & Broussard, W. P. III Long-term geochemical evaluation of the coastal Chicot aquifer system, Louisiana, USA. J. Hydrol. 533, 320–331 (2016).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Prakken, L. B. Groundwater Resources in the New Orleans Area 2008. Louisiana Department of Transportation and Development Report. Water Resources Technical Report No. 80 (2009).

  • 24.

    Cushing, E. M., Kantrowitz, I. H. & Taylor, K. R. Water resources of the Delmarva Peninsula. U.S. Geological Survey Professional Paper 822, 58 pp. https://pubs.usgs.gov/pp/0822/report.pdf (1973).

  • 25.

    Bush, P. W. & Johnston, R. H. Ground-water hydraulics, regional flow, and ground-water development of the Floridan aquifer system in Florida and in parts of Georgia (pp. 80. U.S. Geological Survey Professional Paper 1403-C, South Carolina, and Alabama. https://pubs.usgs.gov/pp/1403c/report.pdf (1988).

    Google Scholar 

  • 26.

    Cherry, G. S. & Peck, M. F. Saltwater intrusion in the Floridan aquifer system near downtown Brunswick, Georgia, 1957–2015. U.S. Geological Survey Open-File. Report 2017-2010, 10 pp. https://doi.org/10.3133/ofr20171010 (2017).

  • 27.

    Foyle, A. M., Henry, V. J. & Alexander, C. R. Mapping the threat of seawater intrusion in a regional coastal aquifer–aquitard system in the southeastern United States. Environ. Geol. 43, 151–159 (2002).

    Article  Google Scholar 

  • 28.

    Smith, B. S. & Harlow Jr, G. E. Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia. U.S. Geological Survey Water-Resources Investigations Report 01-4262 37 pp. https://va.water.usgs.gov/online_pubs/WRIR/01-4262/01-4262.pdf (2002).

  • 29.

    Aucott, W. R. (1996). Hydrology of the Southeastern Coastal Plain aquifer system in South Carolina and parts of Georgia and North Carolina. U.S. Geological Survey Professional Paper 1410-E, 83 pp. https://pubs.usgs.gov/pp/1410e/report.pdf (1996).

  • 30.

    Knobel, L. L., Chapelle, F. H., & Meisler, H. Geochemistry of the Northern Atlantic Coastal Plain Aquifer System. U.S. Geological Survey Professional Paper 1404-L, 57 pp. https://pubs.usgs.gov/pp/1404l/report.pdf (1998).

  • 31.

    Chapelle, F. H. Hydrogeology, Digital Solute-transport Simulation, and Geochemistry of the Lower Cretaceous Aquifer System near Baltimore, Maryland, with a Section on Well Records, Pumpage Information and Other Supplemental Data by T.M. Kean. Maryland Geological Survey Report of Investigations 43, 120 pp. https://pubs.er.usgs.gov/publication/70114204 (1985).

  • 32.

    Fairchild, R. W. & Bentley, C. B. Saline-water intrusion in the Floridan aquifer in the Fernandina Beach area, Nassau County, Florida: U.S. Geological Survey Water-Resources Investigations Report 77-32, 27 pp. https://pubs.er.usgs.gov/publication/wri7732 (1977).

  • 33.

    Cauller, S. J., Carleton, G. B. & Storck, M. J. Hydrogeology of, water withdrawal from, and water levels and chloride concentrations in the major Coastal Plain aquifers of Gloucester and Salem Counties, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 98-4136, 123 pp. https://pubs.usgs.gov/wri/wri98-4136/ (1999).

  • 34.

    Ervin, E. M. Voronin, L. M. & Fusillo, T. V. Water quality of the Potomac-Raritan-Magothy aquifer system in the coastal plain, west-central New Jersey: U.S. Geological Survey Water-Resources Investigations Report 94-4113, 114 pp. https://pubs.er.usgs.gov/publication/wri944113 (1994).

  • 35.

    Lacombe, P. J., & Carleton, G. B. Hydrogeologic framework, availability of water supplies, and saltwater intrusion, Cape May County, New Jersey (No. 1). Water-Resources Investigations Report 01-4246 U.S. Geological Survey. https://pubs.usgs.gov/wri/wri014246/ (2002).

  • 36.

    McAuley, S. D., Barringer, J. L., Paulachok, G. N., Clark, J. S., & Zapecza, O. S. Groundwater flow and quality in the Atlantic City 800 Foot Sand, New Jersey. New Jersey Geological Survey Geological Survey Report GSR 41, 94 pp. https://pubs.er.usgs.gov/publication/70114185 (2001).

  • 37.

    Navoy, A. S., Voronin, L. M., & Modica, E. Vulnerability of Production Wells in the Potomac-Raritan-Magothy Aquifer System to Saltwater Intrusion from the Delaware River in Camden, Gloucester, and Salem Counties, New Jersey. U.S. Geological Survey Scientific Investigations Report 2004-5096, 43 pp. https://pubs.er.usgs.gov/publication/sir20045096 (2005).

  • 38.

    Pucci Jr, A. A., Pope, D. A., & Gronberg, J. M. Hydrogeology, Simulation of Regional Ground-water Flow, and Saltwater Intrusion, Potomac-Raritan-Magothy Aquifer System, Northern Coastal Plain of New Jersey. New Jersey Geological Survey Report GSR36. https://pubs.er.usgs.gov/publication/70159214 (1994).

  • 39.

    Renken, R. A. et al. Impact of Anthropogenic Development on Coastal Ground-water Hydrology in Southeastern Florida, 1900–2000. U. S. Geol. Surv. Circular 1275, 87 pp. https://pubs.usgs.gov/circ/2005/circ1275/pdf/cir1275.pdf (2005).

  • 40.

    Prinos, S. T., Wacker, M. A., Cunningham, K. J., & Fitterman, D. V. Origins and Delineation of Saltwater Intrusion in the Biscayne Aquifer and Changes in the Distribution of Saltwater in Miami-Dade County, Florida. U.S. Geological Survey Report No. 2014-5025, 116 pp. https://pubs.er.usgs.gov/publication/sir20145025 (2014).

  • 41.

    Barlow, P. M. Ground Water in Freshwater–saltwater Environments of the Atlantic Coast. United States Geological Survey Circular 1262 (2003).

  • 42.

    Werner, A. D. et al. Vulnerability indicators of sea water intrusion. Groundwater 50, 48–58 (2012).

    CAS  Article  Google Scholar 

  • 43.

    Jakovovic, D., Werner, A. D., de Louw, P. G., Post, V. E. & Morgan, L. K. Saltwater upconing zone of influence. Adv. Water Resour. 94, 75–86 (2016).

    ADS  Article  Google Scholar 

  • 44.

    Konikow, L., Reilly, T. Seawater intrusion in the United States. In Seawater Intrusion in Coastal Aquifers—Concepts, Methods and Practices (eds Bear, J., Cheng, A.-H. D., Sorek, S., Ouazar, D. & Herrera, I.) 463–506 (Springer, 1999).

  • 45.

    Post, V., Kooi, H. & Simmons, C. Using hydraulic head measurements in variable‐density ground water flow analyses. Groundwater 45, 664–671 (2007).

    CAS  Article  Google Scholar 

  • 46.

    Li, P., Qian, H., Wu, J., Zhang, Y. & Zhang, H. Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water Environ. 32, 195–206 (2013).

    CAS  Article  Google Scholar 

  • 47.

    Han, D. M., Song, X. F., Currell, M. J., Yang, J. L. & Xiao, G. Q. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China. J. Hydrol. 508, 12–27 (2014).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Hynes, V. M. Salt content of wells in Massachusetts affected by the tidal wave and hurricane of 1938. J. N. Engl. Water Works 56, 355–360 (1942).

    CAS  Google Scholar 

  • 49.

    Violette, S., Boulicot, G. & Gorelick, S. M. Tsunami-induced groundwater salinization in southeastern India. CR Geosci. 341, 339–346 (2009).

    Article  Google Scholar 

  • 50.

    Cardenas, M. B. et al. Devastation of aquifers from tsunami‐like storm surge by Supertyphoon Haiyan. Geophys. Res. Lett. 42, 2844–2851 (2015).

    ADS  Article  Google Scholar 

  • 51.

    Villholth, K. G. et al. Tsunami impacts and rehabilitation of groundwater supply: lessons learned from eastern Sri Lanka. In Natural and Anthropogenic Disasters (ed. Jha, M. K.) 82–99 (Springer, Dordrecht, 2010).

  • 52.

    Lee, S., Currell, M. & Cendón, D. I. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: evidence from groundwater isotopes, and environmental significance. Sci. Tot. Environ. 544, 995–1007 (2016).

    CAS  Article  Google Scholar 

  • 53.

    Herczeg, A. L., Dogramaci, S. S. & Leaney, F. W. J. Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar. Freshw. Res. 52, 41–52 (2001).

    CAS  Article  Google Scholar 

  • 54.

    Hansen, J. A., Jurgens, B. C. & Fram, M. S. Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA. Sci. Tot. Environ. 642, 125–136 (2018).

    CAS  Article  Google Scholar 

  • 55.

    Monterey County Water Resources Agency Act, Chapter 52, Section § 52-22. https://www.co.monterey.ca.us/Home/ShowDocument?id=19488. Accessed 1 September 2019.

  • 56.

    Nelson, R. L. & Perrone, D. Local groundwater withdrawal permitting laws in the south‐western US: California in comparative context. Groundwater 54, 747–753 (2016).

    CAS  Article  Google Scholar 

  • 57.

    Abd-Elhamid, H. F. & Javadi, A. A. A cost-effective method to control seawater intrusion in coastal aquifers. Water Resour. Manag. 25, 2755–2780 (2011).

    Article  Google Scholar 

  • 58.

    Perrone, D. & Rohde, M. Benefits and economic costs of managed aquifer recharge in California. San. Franc. Estuary Watershed Sci. 14, 1–13 (2016).

    Google Scholar 

  • 59.

    Taylor, R. G. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    ADS  Article  Google Scholar 

  • 60.

    Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Perrone, D. & Jasechko, S. Deeper well drilling an unsustainable stopgap to groundwater depletion. Nat. Sustainabil. 2, 773–782 (2019).

    Article  Google Scholar 

  • 62.

    Rau, G. C. et al. Error in hydraulic head and gradient time-series measurements: a quantitative appraisal. Hydrol. Earth Syst. Sci. 23, 3603–3629 (2019).

    ADS  Article  Google Scholar 

  • 63.

    National Elevation Dataset (NED). ned.usgs.gov.

  • 64.

    Jasechko, S. & Perrone, D. California’s Central Valley Groundwater Wells Run Dry During Recent Drought. Earth’s Future e2019EF001339. https://doi.org/10.1029/2019EF001339 (2020).

  • 65.

    Santos, I. R., Eyre, B. D. & Huettel, M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar. Coast. Shelf Sci. 98, 1–15 (2012).

    ADS  Article  Google Scholar 

  • 66.

    McCoy, C. A. & Corbett, D. R. Review of submarine groundwater discharge (SGD) in coastal zones of the Southeast and Gulf Coast regions of the United States with management implications. J. Environ. Manag. 90, 644–651 (2009).

    CAS  Article  Google Scholar 

  • 67.

    Sawyer, A. H., Michael, H. A. & Schroth, A. W. From soil to sea: the role of groundwater in coastal critical zone processes. Wiley Interdiscip. Rev. Water 3, 706–726 (2016).

    Google Scholar 

  • 68.

    Lecher, A. & Mackey, K. Synthesizing the effects of submarine groundwater discharge on marine biota. Hydrology 5, 60 (2018).

  • 69.

    Taniguchi, M., Burnett, W. C., Cable, J. E. & Turner, J. V. Investigation of submarine groundwater discharge. Hydrol. Process. 16, 2115–2129 (2002).

    ADS  Article  Google Scholar 


  • Source: Resources - nature.com

    Transition to tall evergreens

    Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora