in

India has natural resource capacity to achieve nutrition security, reduce health risks and improve environmental sustainability

[adace-ad id="91168"]
  • 1.

    FAO Statistical Database (Food and Agriculture Organization, 2011–2013); http://www.fao.org/faostat/en/#home

  • 2.

    National Food Security Bill Registered Number DL-(N)04/0007/2003-13 (Government of India, Ministry of Law and Justice, 10 September 2013).

  • 3.

    Bhattacharyya, R. et al. Soil degradation in India: challenges and potential solutions. Sustainability 7, 3528–3570 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Khajuria, A. Impact of nitrate consumption: case study of Punjab, India. J. Water Resour. Prot. 8, 211–216 (2016).

    CAS  Article  Google Scholar 

  • 5.

    Davis, K. F. et al. Alternative cereals can improve water use and nutrient supply in India. Sci. Adv. 4, eaao1108 (2018).

    ADS  Article  Google Scholar 

  • 6.

    Caulfield, L. E. in Disease Control Priorities in Developing Countries 2nd edn (eds Jamison, D. T., et al.) Ch. 28 (International Bank for Reconstruction and Development/World Bank, 2006).

  • 7.

    Green, R. et al. Dietary patterns in India: a systematic review. Br. J. Nutr. 116, 142–148 (2016).

    CAS  Article  Google Scholar 

  • 8.

    Naik, S., Mahalle, N. & Bhide, V. Identification of vitamin B12 deficiency in vegetarian Indians. Br. J. Nutr. 119, 1–7 (2018).

  • 9.

    DeFries, R. et al. Impact of historical changes in coarse cereals consumption in India on micronutrient intake and anemia prevalence. Food Nutr. Bull. 39, 377–392 (2018).

    Article  Google Scholar 

  • 10.

    Smith, M. R. et al. Inadequate zinc intake in India: past, present, and future. Food Nutr. Bull. 40, 26–40 (2019).

    Article  Google Scholar 

  • 11.

    India: National Family Health Survey (NFHS-4), 2015–16 (International Institute for Population Sciences, 2017).

  • 12.

    Akhtar, S. et al. Prevalence of vitamin A deficiency in South Asia: causes, outcomes, and possible remedies. J. Health Popul. Nutr. 31, 413–423 (2013).

    Article  Google Scholar 

  • 13.

    India: Health of the Nation’s States—The Indian State-Level Disease Burden Initiative (Indian Council of Medical Research, Public Health Foundation of India and Institute for Health Metrics and Evaluation, 2017).

  • 14.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  • 15.

    Sengupta, P. & Mukhopadhyay, K. Economic and environmental impact of National Food Security Act of India. Agric. Food Econ. 4, 1–23. (2016).

    Article  Google Scholar 

  • 16.

    Rao, N. D. et al. Healthy, affordable and climate-friendly diets in India. Glob. Environ. Change 49, 154–165 (2018).

    Article  Google Scholar 

  • 17.

    Vetter, S. H. et al. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agric. Ecosyst. Environ. 237, 234–241 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Harris, F. et al. The water use of Indian diets and socio-demographic factors related to dietary blue water footprint. Sci. Total. Environ. 587–588, 128–136 (2017).

    ADS  Article  Google Scholar 

  • 19.

    Davis, K. F. et al. Assessing the sustainability of post-Green Revolution cereals in India. Proc. Natl Acad. Sci. USA 116, 25034–25041 (2019).

    CAS  Article  Google Scholar 

  • 20.

    Milner, J. et al. Projected health effects of realistic dietary changes to address freshwater constraints in India: a modelling study. Lancet Planet. Health 1, e26–e32 (2017).

    Article  Google Scholar 

  • 21.

    Aleksandrowicz, L. et al. A modelling study using nationally-representative data. Environ. Int. 126, 207–215 (2019).

    CAS  Article  Google Scholar 

  • 22.

    Green, R. et al. Greenhouse gas emissions and water footprints of typical dietary patterns in India. Sci. Total. Environ. 643, 1411–1418 (2018).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Ritchie, H. et al. Sustainable food security in India—domestic production and macronutrient availability. PLoS ONE 13, e0193766 (2018a).

    Article  Google Scholar 

  • 24.

    Ritchie, H. et al. Quantifying, projecting, and addressing India’s hidden hunger. Front. Sustain. Food Sys. 2, 11 (2018b).

    Article  Google Scholar 

  • 25.

    Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article  Google Scholar 

  • 26.

    Household Consumption of Various Goods and Service in India 2011–12. NSS 68th Round (Government of India, 2014).

  • 27.

    Rosa, L. et al. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 13, 104002 (2018).

    ADS  Article  Google Scholar 

  • 28.

    Mason-D’Croz, D. et al. Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. Lancet Planet. Health 3, e318–e329 (2019).

    Article  Google Scholar 

  • 29.

    Sapkota, T. P. et al. Cost-effective opportunities for climate change mitigation in Indian agriculture. Sci. Total. Environ. 655, 1342–1354 (2019).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Willett, W. et al. Food in the anthropocene: the EAT–Lancet commission on healthy diets from sustainable food systems. Lancet Comm. 393, P447–P492 (2019).

    Article  Google Scholar 

  • 31.

    Ahmad, F., Uddin, Md. M., Goparaju, L., Rizvi, J. & Biradar, C. Quantification of the land potential for scaling agroforestry in South Asia. J. Cartogr. Geogr. Inf. 70, 81–89 (2020).

  • 32.

    Sharma, B. et al. Comparative study of mango based agroforestry and mono-cropping system under rainfed condition of West Bengal. Int. J. Plant. Soil. Sci. 15, 1–7 (2017).

    Google Scholar 

  • 33.

    Chirwa, P. W. et al. Tree and crop productivity in gliricidia/maize/pigeonpea cropping systems in southern Malawi. Agrofor. Syst. 59, 265–277 (2003).

    Article  Google Scholar 

  • 34.

    Chiuve S. E. et al. Alternative dietary indices both strongly predict risk of chronic disease. J. Nutr. 142, 1009–1018 (2012).

  • 35.

    Wang, D. D. et al. Global improvement in dietary quality could lead to substantial reduction in premature death. J. Nutr. 149, 1065–1074 (2019).

    Article  Google Scholar 

  • 36.

    Pingali, P., Aiyar, A., Abraham, M. & Rahman, A. Transforming Food Systems for a Rising India (Palgrave-Macmillan, 2019).

  • 37.

    Bowen, L. et al. Dietary intake and rural–urban migration in India: a cross-sectional study. PLoS ONE 6, e14822 (2010).

    ADS  Article  Google Scholar 

  • 38.

    Singh, A.et al. Quantitative estimates of dietary intake with special emphasis on snacking pattern and nutritional status of free living adults in urban slums of Delhi: impact of nutrition transition. BMC Nutr. 1, (2015)..

  • 39.

    Rawal, V. et al. Prevalence of undernourishment in Indian states: explorations based on NSS 68th round data. Econ. Polit. Wkly 54, 35–45 (2019).

    Google Scholar 

  • 40.

    The Global Dietary Database—Global Dietary Intakes, Diseases, and Policies among Children, Women, and Men (Bill and Melinda Gates Foundation, 2016); http://www.globaldietarydatabase.org/the-global-dietary-database-measuring-diet-worldwide.html

  • 41.

    Demographic Statistics Database (United Nations Statistics Division, accessed September 2018); http://data.un.org/Data.aspx?d=POP&f=tableCode%3a22

  • 42.

    Lonnie, M. et al. Protein for life: Review of optimal protein intake, sustainable dietary sources and the effect on appetite in ageing adults. Nutrients 10, 360 (2018).

    Article  Google Scholar 

  • 43.

    Longvah, T. et al. Indian Food Composition Tables (National Institute of Nutrition, 2017).

  • 44.

    Food Composition Database (United States Department of Agriculture, 2016); https://ndb.nal.usda.gov/ndb/

  • 45.

    Human Vitamin and Mineral Requirements. Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand (World Health Organization, 2001).

  • 46.

    Nutrient Index (Oregon State University, 2018); https://lpi.oregonstate.edu/mic/nutrient-index

  • 47.

    Statistical Year Book India 2018 (Ministry of Statistics and Programme Implementation, Government of India, 2019).

  • 48.

    Suresh, K. P. et al. Modeling and forecasting livestock feed resources in India using climate variables. Asian-Aust J. Anim. Sci. 25, 462–470 (2012).

    CAS  Article  Google Scholar 

  • 49.

    Mekonnen, M. M. & Hoekstra, A. Y. National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption (Value of Water Research Report Series Number 50) (UNESCO-IHE Institute for Water Education, 2011).

  • 50.

    Pastor, A. V. et al. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 18, 5041–5059 (2014).

    ADS  Article  Google Scholar 

  • 51.

    Briscoe, J. & Malik, R. P. S. India’s Water Economy: Bracing for a Turbulent Future (Oxford Univ. Press, 2006).

  • 52.

    Vetter, S. H. et al. Corrigendum to “Greenhouse gas emissions from agricultural food production to supply Indian diets: implications for climate change mitigation” [Agric. Ecosyst. Environ. 237 (2017) 234–241]. Agric. Ecosyst. Environ. 272, 83–85 (2019).

    Article  Google Scholar 

  • 53.

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci USA 110, 20888–20893 (2013).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Renard, C. Crop Residues in Sustainable Mixed Crop/Livestock Farming Systems (CABI, 1997).

  • 55.

    Smil, V. Crop residues: agriculture’s largest harvest. BioScience 49, 299–308 (1991).

    Article  Google Scholar 

  • 56.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2016).

  • 57.

    Haskell, M. J. The challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion—evidence in humans. Am. J. Clin. Nutr. 96, 1193S–1203S (2012).

    CAS  Article  Google Scholar 

  • 58.

    Schwalfenberg, G. K. Vitamins K1 and K2: the emerging group of vitamins required for human health. J. Nutr. Metab. 2017, 6254836 (2017).

    Article  Google Scholar 

  • 59.

    Bakshi, M. P. S. Waste to worth: vegetable wastes as animal feed. CAB Rev. 11, 1–26 (2016).

  • 60.

    Dikshit, A. K. & Birthal, P. S. India’s livestock feed demand: estimates and projections. Agric. Econ. Res. Rev. 23, 15–28 (2010).

    Google Scholar 

  • 61.

    Nair, P. K. R. et al. Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ. Sci. Pol. 12, 1099–1111 (2009).

    CAS  Article  Google Scholar 

  • 62.

    Murthy, I. K. et al. Carbon sequestration potential of agroforestry systems in India. Earth Sci. Clim. Change 4, 1000131 (2013).

    Google Scholar 


  • Source: Resources - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air