in

Ion sieving by a two-dimensional Ti3C2Tx alginate lamellar membrane with stable interlayer spacing

[adace-ad id="91168"]
  • 1.

    Nair, R. R., Wu, H., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335, 442–444 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Joshi, R. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Cheng, C., Jiang, G., Simon, G. P., Liu, Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Mouterde, T. et al. Molecular streaming and its voltage control in Ångström-Scale channels. Nature 567, 87–90 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Koenig, S. P., Wang, L., Pellegrino, J. & Bunch, J. S. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Surwade, S. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Zhao, J. et al. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gasmixture separation. Sci. Adv. 5, eaav1851 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Huang, S. et al. Single-Layer graphene membranes by crack-free transfer for gas mixture separation. Nat. Commun. 9, 2632 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Raidongia, K. & Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012).

    CAS  PubMed  Google Scholar 

  • 10.

    Kim, H. et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Liu, G., Jin, W. & Xu, N. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. 55, 2–16 (2016).

    Google Scholar 

  • 12.

    Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–551 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Abozar, A., Phillip, S., Samuel, T. & Martin Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 1–12 (2016).

    Google Scholar 

  • 15.

    Sun, P. et al. Selective ion penetration of graphene oxide membranes. Acs Nano 7, 428–437 (2013).

    CAS  PubMed  Google Scholar 

  • 16.

    Liu, Y., Wang, N., Cao, Z. & Jürgen, C. Molecular sieving through interlayer galleries. Mater. Chem. 2, 1235–1238 (2014).

    CAS  Google Scholar 

  • 17.

    Deng, M., Kwac, K., Li, M., Jung, Y. & Park, H. G. Stability molecular sieving, and ion diffusion selectivity of a lamellar membrane from 2D molybdenum disulfide. Nano Lett. 17, 2342–2348 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Sun, L., Huang, H. & Peng, X. Laminar MoS2 membranes for molecule separation. Chem. Commun. 49, 10718–10720 (2013).

    CAS  Google Scholar 

  • 19.

    Chen, C. et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 9, 1902 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Yury, G. & Babak, A. The rise of MXenes. Acs Nano 13, 8491–8494 (2019).

    Google Scholar 

  • 21.

    Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    ADS  CAS  Google Scholar 

  • 22.

    Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).

    CAS  PubMed  Google Scholar 

  • 23.

    Lao, J., Lv, R., Gao, J. & Wang, P. Aqueous stable Ti3C2 MXene membrane with fast and photo-switchable nanofluidic transport. ACS Nano 12, 12464–12471 (2018).

    CAS  PubMed  Google Scholar 

  • 24.

    Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11, 6440–6450 (2017).

    CAS  PubMed  Google Scholar 

  • 25.

    Frey, N. C. et al. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 13, 3031–3041 (2019).

    CAS  PubMed  Google Scholar 

  • 26.

    Sarycheva, A. et al. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Mendoza-Sánchez, B. & Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 28, 6104–6135 (2016).

    PubMed  Google Scholar 

  • 28.

    Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Liu, H. et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sens. Actuators B Chem. 218, 60–66 (2015).

    CAS  Google Scholar 

  • 30.

    Ding., L. et al. Two-dimensional lamellar membrane: MXene nanosheet stacks angew. Chem. Int. Ed. 56, 1825–1829 (2017).

    CAS  Google Scholar 

  • 31.

    Ren, C. et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Phys. Chem. Lett. 6, 4026–4031 (2015).

    CAS  Google Scholar 

  • 32.

    Lu, S. et al. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13, 10535–10544 (2019).

    CAS  PubMed  Google Scholar 

  • 33.

    Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    CAS  Google Scholar 

  • 34.

    Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotech 10, 1053–1057 (2015).

    ADS  CAS  Google Scholar 

  • 35.

    Thomas, M., Corry, B. & Hilder, T. A. What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation. Small 10, 1453–1465 (2014).

    CAS  PubMed  Google Scholar 

  • 36.

    Richards, L. A., Schafer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).

    CAS  PubMed  Google Scholar 

  • 37.

    Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).

    ADS  PubMed  Google Scholar 

  • 38.

    Ghidiu, M., Lukatskaya, M. R., Zhao, M., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘Clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).

    ADS  CAS  Google Scholar 

  • 39.

    Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 505, 380–383 (2017).

    ADS  Google Scholar 

  • 40.

    Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain 3, 296–302 (2020).

    Google Scholar 

  • 41.

    Thebo, K. H. et al. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9, 1486 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Hung, W. et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying D-Spacing. Chem. Mater. 26, 2983–2990 (2014).

    CAS  Google Scholar 

  • 43.

    Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 44.

    Zhang, Y., Zhang, S. & Chung, T. Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration. Environ. Sci. Technol. 49, 10235–10242 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    Halim, J. et al. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 362, 406–417 (2016).

    ADS  CAS  Google Scholar 

  • 46.

    Zhang, M. et al. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Levi, M. D. et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 5, 1400815 (2015).

    Google Scholar 

  • 48.

    Brus, J. et al. Structure and dynamics of alginate gels cross-linked by polyvalent ions probed via solid state NMR spectroscopy. Biomacromolecules 18, 2478–2488 (2017).

    CAS  PubMed  Google Scholar 

  • 49.

    Zhang, M. J. et al. Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Res. 129, 337–346 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 50.

    Guo, Z. W. et al. Fabrication of efficient alginate composite beads embedded with N-doped carbon dots and their application for enhanced rare earth elements adsorption from aqueous solutions. J. Colloid Interface Sci. 562, 224–234 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 51.

    Li, Z. T. et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater. Sci. Eng. B 191, 33–40 (2015).

    CAS  Google Scholar 

  • 52.

    Rasool, K. et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 7, 1598 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Peng, J. et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 557, 701–707 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Agulhon, P., Markova, V., Robitzer, M., Françoise, Q. & Tzonka, M. Structure of alginate gels: interaction of diuronate units with divalent cations from density functional calculations. Biomacromolecules 13, 1899–1907 (2012).

    CAS  PubMed  Google Scholar 

  • 55.

    Boya X. The development of carboxylic acid separation by nanofiltration membrane for carboxylate platform using lingnocellulosic biomass. The Pennsylvania State University 53–55 (2014).

  • 56.

    Wu, J., Gerstandt, K., Majumder, M., Zhan, X. & Hinds, B. J. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes. Nanoscale 3, 3321–3328 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 57.

    Li, J., Peng, R. & Li, D. Q. Effects of ion size, ion valence and pH of electrolyte solutions on EOF velocity in single nanochannels. Anal. Chim. Acta 1059, 68–79 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 58.

    Bocquet, Lydéric & Charlaix, E. Nanofluidics from bulk to interfaces. Chem. Soc. Rev. 3, 1073–1095 (2010).

    Google Scholar 

  • 59.

    Alhabeb, M. et al. Guidelines for synthesis and processing of 2D titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

    CAS  Google Scholar 

  • 60.

    Liu, X. et al. Porous diffusion dialysis membranes for rapid acid recovery. J. Mater. Sci. 502, 76–83 (2016).

    Google Scholar 

  • 61.

    Ji, W. et al. Self-organized nanostructured anion exchange membranes for acid recovery. Chem. Eng. J. 382, 122838 (2020).

    Google Scholar 


  • Source: Resources - nature.com

    Public health is moot without water security

    Decarbonize and diversify