in

A database of global coastal conditions

[adace-ad id="91168"]
  • 1.

    Horning, N., Robinson, J. A., Sterling, E. J., Turner, W. & Spector, S. Remote sensing for ecology and conservation. Techniques in Ecology & Conservation Series (Oxford University Press, 2010).

  • 2.

    Li, J. et al. A review of remote sensing for environmental monitoring in China. Remote Sens. 12, 1130 (2020).

    ADS 

    Google Scholar 

  • 3.

    Carter, W. D. & Paulson, R. W. Introduction to monitoring dynamic environmental phenomena of the world using satellite data collection systems. (U.S. Geological Survey, 1979).

  • 4.

    Nurdin, S., Mustapha, M. A. & Lihan, T. The relationship between sea surface temperature and chlorophyll-a concentration in fisheries aggregation area in the archipelagic waters of spermonde using satellite images. AIP Conf. Proc. 1571, 466–472 (2013).

    ADS 

    Google Scholar 

  • 5.

    Ward, D., Phinn, S. R. & Murray, A. T. Monitoring growth in rapidly urbanizing areas using remotely sensed data. Prof. Geogr. 52, 371–386 (2000).

    Google Scholar 

  • 6.

    Singh, A. Review article: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10, 989–1003 (1989).

    Google Scholar 

  • 7.

    Dewan, A. M. & Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 29, 390–401 (2009).

    Google Scholar 

  • 8.

    Green, K., Kempka, D. & Lackey, L. Using remote sensing to detect and monitor land-cover and land-use change. Photogramm. Eng. Remote Sens. 60, 331–337 (1994).

    Google Scholar 

  • 9.

    Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 22, 2377–2400 (2001).

    Google Scholar 

  • 10.

    Rosenqvist, Å., Milne, A., Lucas, R., Imhoff, M. & Dobson, C. A review of remote sensing technology in support of the Kyoto Protocol. Environ. Sci. Policy 6, 441–455 (2003).

    Google Scholar 

  • 11.

    Liu, J. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sens. Environ. 62, 158–175 (1997).

    ADS 

    Google Scholar 

  • 12.

    Colwell, R. R. Global climate and infectious disease: The cholera paradigm. Science 274, 2025–2031 (1996).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 13.

    Escobar, L. E. et al. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Trop. 149, 202–211 (2015).

    PubMed 

    Google Scholar 

  • 14.

    Watts, N. et al. The 2019 report of The Lancet Countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. Lancet 394, 1836–1878 (2019).

    PubMed 

    Google Scholar 

  • 15.

    Alesheikh, A. A., Ghorbanali, A. & Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 4, 61–66 (2007).

    Google Scholar 

  • 16.

    Specter, C. & Gayle, D. Managing technology transfer for coastal zone development: Caribbean experts identify major issues. Int. J. Remote Sens. 11, 1729–1740 (1990).

    Google Scholar 

  • 17.

    Green, E. P., Mumby, P. J., Edwards, A. J. & Clark, C. D. A review of remote sensing for the assessment and management of tropical coastal resources. Coast. Manag. 24, 1–40 (1996).

    Google Scholar 

  • 18.

    NASA. MODIS (Moderate Resolution Imaging Spectroradiometer). https://modis.gsfc.nasa.gov/about/ (2021).

  • 19.

    Kilpatrick, K. A. et al. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 165, 27–41 (2015).

    ADS 

    Google Scholar 

  • 20.

    Esaias, W. E. et al. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 36, 1250–1265 (1998).

    ADS 

    Google Scholar 

  • 21.

    Donlon, C. J. et al. Toward improved validation of satellite SST measurements for climate research. J. Clim. 15, 353–369 (2002).

    ADS 

    Google Scholar 

  • 22.

    Minnett, P. J. Satellite infrared scanning radiometers — AVHRR and ATSR/M. in Microwave Remote Sensing for Oceanographic and Marine Weather-Forecast Models 141–163 (Springer Netherlands, 1990).

  • 23.

    Hillger, D. et al. First-Light Imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 94, 1019–1029 (2013).

    ADS 

    Google Scholar 

  • 24.

    O’Brien, J. From MODIS to VIIRS – Making the Switch for Air Quality Professionals. NASA Earth Science/Applied Science https://appliedsciences.nasa.gov/our-impact/news/modis-viirs-making-switch-air-quality-professionals (2020).

  • 25.

    Minnett, P. J., Evans, R. H., Podestá, G. P. & Kilpatrick, K. A. Sea-surface temperature from Suomi-NPP VIIRS: Algorithm development and uncertainty estimation. in SPIE 9111, Ocean Sensing and Monitoring VI (eds. Hou, W. W. & Arnone, R. A.) 91110C (2014).

  • 26.

    Drusch, M. et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 120, 25–36 (2012).

    ADS 

    Google Scholar 

  • 27.

    Donlon, C. et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 88, 1197–1214 (2007).

    ADS 

    Google Scholar 

  • 28.

    NOAA. Ocean Facts: Why do scientists measure sea surface temperature? https://oceanservice.noaa.gov/facts/sea-surface-temperature.html (2020).

  • 29.

    Wei, G. F., Tang, D. L. & Wang, S. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas. Adv. Sp. Res. 41, 12–19 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 30.

    O’Reilly, J. E. et al. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 103, 24937–24953 (1998).

    ADS 

    Google Scholar 

  • 31.

    Hu, C., Lee, Z. & Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean. 117, C01011 (2012).

    ADS 

    Google Scholar 

  • 32.

    Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. 113, E5062–E5071 (2016).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 33.

    Lipp, E. K., Huq, A. & Colwell, R. R. Effects of global climate on infectious disease: The Cholera model. Clin. Microbiol. Rev. 15, 757–770 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Grimes, J. D. et al. Viewing marine bacteria, their activity and response to environmental drivers from orbit: Satellite remote sensing of bacteria. Microb. Ecol. 67, 489–500 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Shen, L., Xu, H. & Guo, X. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 12, 7778–803 (2012).

  • 36.

    Hayashi, M., Jin, F. & Stuecker, M. F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 11, 1–10 (2020).

    Google Scholar 

  • 37.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

  • 38.

    Minnett, P. J. et al. Sea-surface temperature measurements from the moderate-resolution imaging spectroradiometer (MODIS) on Aqua and Terra. in IEEE International Geoscience and Remote Sensing Symposium Proceedings. 2004 7, 4576–4579 (2004).

  • 39.

    Minnett, P. J. The validation of sea surface temperature retrievals from spaceborne infrared radiometers. in Oceanography from Space (Springer Netherlands, 2010).

  • 40.

    Minnett, P. J. & Corlett, G. K. A pathway to generating climate data records of sea-surface temperature from satellite measurements. Deep Sea Res. Part II Top. Stud. Oceanogr. 77–80, 44–51 (2012).

    ADS 

    Google Scholar 

  • 41.

    Castaneda-Guzman, M., Mantilla-Saltos, G., Murray, K. A., Settlage, R. & Escobar, L. E. A database of global coastal conditions. Figshare https://doi.org/10.6084/m9.figshare.c.5660263.v1 (2021).

  • 42.

    R Core Team. R: A Language and Environment for Statistical Computing. (2020).

  • 43.

    NOAA. National Oceanic and Atmospheric Administration (NOAA) Coastal Watch. https://coastwatch.pfeg.noaa.gov/erddapinfo/ (2021).

  • 44.

    Castaneda-Guzman, M., Mantilla-Saltos, G., Murray, K. A., Settlage, R. & Escobar, L. E. Methods and code. Figshare https://doi.org/10.6084/m9.figshare.13708642.v4 (2021).

  • 45.

    Stanford. Best practices for file formats. https://library.stanford.edu/research/data-management-services/data-best-practices/best-practices-file-formats (2021).

  • 46.

    UCAR Community Programs. Network Common Data Form (NetCDF). https://www.unidata.ucar.edu/software/netcdf/ (2021).

  • 47.

    Michna, P. & Woods, M. RNetCDF: Interface to ‘NetCDF’ Datasets. (2019).

  • 48.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).

  • 49.

    ArcGIS. What is a raster data? https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/what-is-raster-data.htm (2021).

  • 50.

    United Nations. United Nations Convention on the Law of the Sea. 1833 U.N.T.S. 397 (1982).

  • 51.

    Tilstone, G. H. et al. Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea. Cont. Shelf Res. 65, 14–26 (2013).

    ADS 

    Google Scholar 

  • 52.

    Hoge, F. E. et al. Validation of Terra-MODIS phytoplankton chlorophyll fluorescence line height. I. Initial airborne Lidar results. Appl. Opt. 42, 2767-2771 (2003).

    ADS 
    PubMed 

    Google Scholar 

  • 53.

    Remer, L. A. Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett. 29, 8008 (2002).

    ADS 

    Google Scholar 

  • 54.

    Gentemann, C. L. Three way validation of MODIS and AMSR-E sea surface temperatures. J. Geophys. Res. Ocean. 119, 2583–2598 (2014).

    ADS 

    Google Scholar 

  • 55.

    Fang, H., Wei, S. & Liang, S. Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sens. Environ. 119, 43–54 (2012).

    ADS 

    Google Scholar 

  • 56.

    Hosoda, K., Murakami, H., Sakaida, F. & Kawamura, H. Algorithm and validation of sea surface temperature observation using MODIS sensors aboard terra and aqua in the western North Pacific. J. Oceanogr. 63, 267–280 (2007).

    Google Scholar 

  • 57.

    Hao, Y. et al. Validation of MODIS sea surface temperature product in the coastal waters of the Yellow Sea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 1667–1680 (2017).

    ADS 

    Google Scholar 

  • 58.

    Sims, D. A. et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res. Biogeosciences 111 (2006).

  • 59.

    Miles, T. N. & He, R. Temporal and spatial variability of Chl-a and SST on the South Atlantic Bight: Revisiting with cloud-free reconstructions of MODIS satellite imagery. Cont. Shelf Res. 30, 1951–1962 (2010).

    ADS 

    Google Scholar 

  • 60.

    Ma, S., Zhang, X., Ding, C., Han, W. & Lu, Y. Comparison of the spatiotemporal variation of Chl-a in the East China Sea and Bohai Sea based on long time series satellite data. in 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) 1–6 (2021).

  • 61.

    Watts, N. et al. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet 6736 (2020).

  • 62.

    Moradi, M. & Kabiri, K. Spatio-temporal variability of SST and Chlorophyll-a from MODIS data in the Persian Gulf. Mar. Pollut. Bull. 98, 14–25 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • 63.

    Golder, M. R. et al. Chlorophyll-a, SST and particulate organic carbon in response to the cyclone Amphan in the Bay of Bengal. J. Earth Syst. Sci. 130, 157 (2021).

    ADS 
    CAS 

    Google Scholar 

  • 64.

    Minnett, P. J., Evans, R. H., Kearns, E. J. & Brown, O. B. Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). in IEEE International Geoscience and Remote Sensing Symposium vol. 2, 1177–1179 (IEEE, 2002).

  • 65.

    Qin, H., Chen, G., Wang, W., Wang, D. & Zeng, L. Validation and application of MODIS-derived SST in the South China Sea. Int. J. Remote Sens. 35, 4315–4328 (2014).

    Google Scholar 

  • 66.

    Saulquin, B., Gohin, F. & Garrello, R. Regional Objective Analysis for Merging High-Resolution MERIS, MODIS/Aqua, and SeaWiFS Chlorophyll-a Data From 1998 to 2008 on the European Atlantic Shelf. IEEE Trans. Geosci. Remote Sens. 49, 143–154 (2011).

    ADS 

    Google Scholar 

  • 67.

    Chen, J. & Quan, W. An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS imagery. Environ. Monit. Assess. 185, 2243–2255 (2013).

    PubMed 

    Google Scholar 

  • 68.

    Hanafin, J. A. & Minnett, P. J. Thermal profiling of the sea surface skin layer using FTIR measurements. in Gas Transfer at Water Surfaces 161–166 (Blackwell Publishing, 2002).

  • 69.

    Wong, E. W. & Minnett, P. J. The response of the ocean thermal skin layer to variations in incident infrared radiation. J. Geophys. Res. Ocean. 123, 2475–2493 (2018).

    ADS 

    Google Scholar 

  • 70.

    Ward, B. Near-surface ocean temperature. J. Geophys. Res. 111, C02004 (2006).

    ADS 

    Google Scholar 

  • 71.

    Kilpatrick, K. A., Podestá, G. P. & Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. Ocean. 106, 9179–9197 (2001).

    ADS 

    Google Scholar 

  • 72.

    Hollstein, A., Segl, K., Guanter, L., Brell, M. & Enesco, M. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow, water and clear sky pixels in Sentinel-2 MSI images. Remote Sens. 8, 666 (2016).

    ADS 

    Google Scholar 

  • 73.

    Luo, B., Minnett, P. J., Gentemann, C. & Szczodrak, G. Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sens. Environ. 223, 8–20 (2019).

    ADS 

    Google Scholar 

  • 74.

    Moore, T. S., Campbell, J. W. & Dowell, M. D. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sens. Environ. 113, 2424–2430 (2009).

    ADS 

    Google Scholar 

  • 75.

    Pieri, M. et al. Assessment of three algorithms for the operational estimation of [CHL] from MODIS data in the Western Mediterranean Sea. Eur. J. Remote Sens. 48, 383–401 (2015).

    Google Scholar 

  • 76.

    Tilstone, G. H. et al. Performance of Ocean Colour Chlorophyll-a algorithms for Sentinel-3 OLCI, MODIS-Aqua and Suomi-VIIRS in open-ocean waters of the Atlantic. Remote Sens. Environ. 260, 112444 (2021).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increases in extreme fire weather driven by atmospheric humidity and temperature

    Evolution of cooperation in costly institutions exhibits Red Queen and Black Queen dynamics in heterogeneous public goods