in

A decadal perspective on north water microbial eukaryotes as Arctic Ocean sentinels

[adace-ad id="91168"]
  • 1.

    Lovejoy, C., Massana, R. & Pedros-Alio, C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microb. 72, 3085–3095. https://doi.org/10.1128/aem.72.5.3085-3095.2006 (2006).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Chamnansinp, A., Li, Y., Lundholm, N. & Moestrup, Ø. Global diversity of two widespread, colony-forming diatoms of the marine plankton, Chaetoceros socialis (syn. C. radians) and Chaetoceros gelidus sp. nov.. J. Phycol. 49, 1128–1141. https://doi.org/10.1111/jpy.12121 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Bluhm, B. A. & Gradinger, R. Regional variability in food availability for Arctic marine mammals. Ecol. Appl. 18, S77-96. https://doi.org/10.1890/06-0562.1 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Bâcle, J., Carmack, E. C. & Ingram, R. G. Water column structure and circulation under the North Water during spring transition: April–July 1998. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4907–4925. https://doi.org/10.1016/S0967-0645(02)00170-4 (2002).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Dumont, D., Gratton, Y. & Arbetter, T. E. Modeling wind-driven circulation and landfast ice-edge processes during polynya events in Northern Baffin Bay. J. Phys. Oceanogr. 40, 1356–1372. https://doi.org/10.1175/2010JPO4292.1 (2010).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Tremblay, J. -É., Gratton, Y., Fauchot, J. & Price, N. M. Climatic and oceanic forcing of new, net, and diatom production in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4927–4946. https://doi.org/10.1016/S0967-0645(02)00171-6 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives. Progr. Oceanogr. 139, 66–88. https://doi.org/10.1016/j.pocean.2015.08.007 (2015).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Møller, E. F. et al. Zooplankton phenology may explain the North Water polynya’s importance as a breeding area for little auks. Mar. Ecol. Progr. Ser. 605, 207–223. https://doi.org/10.3354/meps12745 (2018).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Mei, Z.-P. et al. Physical control of spring–summer phytoplankton dynamics in the North Water, April–July 1998. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4959–4982. https://doi.org/10.1016/S0967-0645(02)00173-X (2002).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Marchese, C. et al. Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions. Polar Biol. 40, 1721–1737. https://doi.org/10.1007/s00300-017-2095-2 (2017).

    Article 

    Google Scholar 

  • 11.

    Martin, J. et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar. Ecol. Progr. Ser. 412, 69–84. https://doi.org/10.3354/meps08666 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Joli, N. et al. Need for focus on microbial species following ice melt and changing freshwater regimes in a Janus Arctic Gateway. Sci. Rep. 8, 9405. https://doi.org/10.1038/s41598-018-27705-6 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Lehmann, N. et al. Remote western Arctic nutrients fuel remineralization in deep Baffin Bay. Global Biogeochem. Cycles 33, 649–667. https://doi.org/10.1029/2018GB006134 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Blais, M. et al. Contrasting interannual changes in phytoplankton productivity and community structure in the coastal Canadian Arctic Ocean. Limnol. Oceanogr. 62, 2480–2497. https://doi.org/10.1002/lno.10581 (2017).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Ardyna, M., Gosselin, M., Michel, C., Poulin, M. & Tremblay, J. -É. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: Contrasting oligotrophic and eutrophic regions. Mar. Ecol. Progr. Ser. 442, 37–57. https://doi.org/10.3354/meps09378 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212. https://doi.org/10.1002/2014GL061047 (2014).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Lovejoy, C., Legendre, L., Martineau, M.-J., Bâcle, J. & Von Quillfeldt, C. H. Distribution of phytoplankton and other protists in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5027–5047. https://doi.org/10.1016/S0967-0645(02)00176-5 (2002).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Tremblay, J. -É., Michel, C., Hobson, K. A., Gosselin, M. & Price, N. M. Bloom dynamics in early opening waters of the Arctic Ocean. Limnol. Oceanogr. 51, 900–912. https://doi.org/10.4319/lo.2006.51.2.0900 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Mayzaud, P., Boutoute, M., Noyon, M., Narcy, F. & Gasparini, S. Lipid and fatty acids in naturally occurring particulate matter during spring and summer in a high arctic fjord (Kongsfjorden, Svalbard). Mar. Biol. 160, 383–398. https://doi.org/10.1007/s00227-012-2095-2 (2013).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Dumont, D., Gratton, Y. & Arbetter, T. E. Modeling the dynamics of the North Water Polynya Ice Bridge. J. Phys. Oceanogr. 39, 1448–1461. https://doi.org/10.1175/2008jpo3965.1 (2009).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Simo-Matchim, A.-G., Gosselin, M., Poulin, M., Ardyna, M. & Lessard, S. Summer and fall distribution of phytoplankton in relation to environmental variables in Labrador fjords, with special emphasis on Phaeocystis pouchetii. Mar. Ecol. Progr. Ser. 572, 19–42. https://doi.org/10.3354/meps12125 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Flynn, K. J. et al. Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?. J. Plankton Res. 41, 375–391. https://doi.org/10.1093/plankt/fbz026 (2019).

    Article 

    Google Scholar 

  • 23.

    Levinsen, H. & Nielsen, T. G. The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnol. Oceanogr. 47, 427–439. https://doi.org/10.4319/lo.2002.47.2.0427 (2002).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Marquardt, M., Vader, A., Stübner, E. I., Reigstad, M. & Gabrielsen, T. M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, in West Spitsbergen, Norway). Appl. Environ. Microb. 82, 1868–1880. https://doi.org/10.1128/AEM.03208-15 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Terrado, R., Vincent, W. F. & Lovejoy, C. Mesopelagic protists: diversity and succession in a coastal Arctic ecosystem. Aquat. Microb. Ecol. 56, 25–39. https://doi.org/10.3354/ame01327 (2009).

    Article 

    Google Scholar 

  • 26.

    Johnson, M. D. & Beaudoin, D. J. The genetic diversity of plastids associated with mixotrophic oligotrich ciliates. Limnol. Oceanogr. 64, 2187–2201. https://doi.org/10.1002/lno.11178 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Onda, D. F. et al. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front. Mar. Sci. 4, 16. https://doi.org/10.3389/fmars.2017.00016 (2017).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536. https://doi.org/10.1038/s41598-019-45935-0 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted Picoprasinophytes in Arctic seas 1. J. Phycol. 43, 78–89. https://doi.org/10.1111/j.1529-8817.2006.00310.x (2007).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Metfies, K., von Appen, W.-J., Kilias, E., Nicolaus, A. & Nöthig, E.-M. Biogeography and photosynthetic biomass of arctic marine pico-eukaroytes during summer of the record sea ice minimum 2012. PLoS ONE 11, e0148512. https://doi.org/10.1371/journal.pone.0148512 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 11, 1372. https://doi.org/10.1038/ismej.2017.7 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Piedade, G. J., Wesdorp, E. M., Montenegro-Borbolla, E., Maat, D. S. & Brussaard, C. P. D. Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses 10, 676. https://doi.org/10.3390/v10120676 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Maat, D. S. et al. Characterization and temperature dependence of Arctic Micromonas polaris viruses. Viruses 9, 134. https://doi.org/10.3390/v9060134 (2017).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Demory, D. et al. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME J. 13, 132–146. https://doi.org/10.1038/s41396-018-0248-0 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    Ardyna, M. et al. Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr. 62, 2113–2132. https://doi.org/10.1002/lno.10554 (2017).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Luddington, I. A., Lovejoy, C. & Kaczmarska, I. Species-rich meta-communities of the diatom order Thalassiosirales in the Arctic and northern Atlantic Ocean. J. Plankton Res. 38, 781–797. https://doi.org/10.1093/plankt/fbw030 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Booth, B. C. et al. Dynamics of Chaetoceros socialis blooms in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5003–5025. https://doi.org/10.1016/S0967-0645(02)00175-3 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Oziel, L. et al. Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean. Nat. Commun. 11, 1–8. https://doi.org/10.1038/s41467-020-15485-5 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Dı́ez, B., Pedrós-Alió, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA Gene cloning and sequencing. Appl. Environ. Microb. 67, 2932. https://doi.org/10.1128/AEM.67.7.2932-2941.2001 (2001).

    Article 

    Google Scholar 

  • 40.

    Crawford, D. W., Cefarelli, A. O., Wrohan, I. A., Wyatt, S. N. & Varela, D. E. Spatial patterns in abundance, taxonomic composition and carbon biomass of nano-and microphytoplankton in subarctic and Arctic Seas. Prog. Oceanogr. 162, 132–159. https://doi.org/10.1016/j.pocean.2018.01.006 (2018).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Fu, R. & Gong, J. Single cell analysis linking ribosomal (r) DNA and r RNA copy numbers to cell size and growth rate provides insights into molecular protistan ecology. J. Eukaryot. Microbiol. 64, 885–896. https://doi.org/10.1111/jeu.12425 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Lewis, K., Van Dijken, G. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202. https://doi.org/10.1126/science.aay8380 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Updated daily Sea Ice Index, Version 3 (NSIDC: National Snow and Ice Data Center, Boulder, CO USA). https://doi.org/10.7265/N5K072F8 (2017).

  • 44.

    Ryan, P. A. & Münchow, A. Sea ice draft observations in Nares Strait from 2003 to 2012. J. Geophys. Res. Oceans 122, 3057–3080. https://doi.org/10.1002/2016JC011966 (2017).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Grasshoff, K. et al. (eds). Methods of seawater analysis 3rd edn (John Wiley & Sons). https://doi.org/10.1002/9783527613984 (2009).

  • 46.

    Terrado, R. et al. Protist community composition during spring in an Arctic flaw lead polynya. Polar Biol. 34, 1901–1914. https://doi.org/10.1007/s00300-011-1039-5 (2011).

    Article 

    Google Scholar 

  • 47.

    Dasilva, C. R., Li, W. K. W. & Lovejoy, C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J. Plankton Res. 36, 344–363. https://doi.org/10.1093/plankt/fbt123 (2014).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Comeau, A. M., Li, W. K., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6, e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Bushnell, B., Rood, J. & Singer, E. BBMerge–accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056. https://doi.org/10.1371/journal.pone.0185056 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 75, 7537–7541. https://doi.org/10.1128/AEM.01541-09 (2009).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Comeau, A. M. et al. Protists in Arctic drift and land-fast sea ice. J. Phycol. 49, 229–240. https://doi.org/10.1111/jpy.12026 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 54.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. https://doi.org/10.1093/nar/gks1160 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under Maximum Likelihood. Syst. Biol. 60, 291–302. https://doi.org/10.1093/sysbio/syr010 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Thomson, R. E. & Fine, I. V. Estimating mixed layer depth from oceanic profile data. J. Atmos. Ocean. Technol. 20, 319–329. https://doi.org/10.1175/1520-0426(2003)020%3c0319:EMLDFO%3e2.0.CO;2 (2003).

    ADS 
    Article 

    Google Scholar 

  • 61.

    Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343. https://doi.org/10.1890/10-1345.1 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 62.

    Melling, H., Gratton, Y. & Ingram, G. Ocean circulation within the North Water polynya of Baffin Bay. Atmos. Ocean 39, 301–325. https://doi.org/10.1080/07055900.2001.9649683 (2001).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum

    Olfactory signals and fertility in olive baboons