in

A DNA barcode-based survey of wild urban bees in the Loire Valley, France

[adace-ad id="91168"]
  • 1.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 2.

    Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).

    PubMed  Article  Google Scholar 

  • 3.

    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article  Google Scholar 

  • 4.

    Thomas, C. D., Jones, T. H. & Hartley, S. E. “Insectageddon”: A call for more robust data and rigorous analyses. Glob. Chang. Biol. 25, 1891–1892 (2019).

    ADS  PubMed  Article  Google Scholar 

  • 5.

    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science (80-) 368, 417–420 (2020).

    ADS  Article  CAS  Google Scholar 

  • 6.

    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed  Article  Google Scholar 

  • 7.

    Pérez-Méndez, N. et al. The economic cost of losing native pollinator species for orchard production. J. Appl. Ecol. 57, 599–608 (2020).

    Article  Google Scholar 

  • 8.

    Porto, R. G. et al. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Secur. 12, 1425–1442 (2020).

    Article  Google Scholar 

  • 9.

    Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Godfray, H. C. J. et al. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B Biol. Sci. 281, 20140558 (2014).

    Article  Google Scholar 

  • 11.

    Fortel, L. et al. Decreasing abundance, increasing diversity and changing structure of the Wild Bee Community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS ONE 9, e104679 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Geslin, B. et al. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecol. Evol. 6, 6599–6615 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Geslin, B., Le Féon, V., Kuhlmann, M., Vaissière, B. E. & Dajoz, I. The bee fauna of large parks in downtown Paris, France. Ann. la Société Entomol. Fr. 51, 487–493 (2015).

    Article  Google Scholar 

  • 14.

    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Lerman, S. B., Contosta, A. R., Milam, J. & Bang, C. To mow or to mow less: Lawn mowing frequency affects bee abundance and diversity in suburban yards. Biol. Conserv. 221, 160–174 (2018).

    Article  Google Scholar 

  • 16.

    Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 18.

    McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).

    Article  Google Scholar 

  • 19.

    Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).

    PubMed  Article  Google Scholar 

  • 20.

    Ropars, L., Dajoz, I. & Geslin, B. La ville un désert pour les abeilles sauvages? J. Bot. Soc. Bot. Fr. 79, 29–35 (2017).

    Google Scholar 

  • 21.

    Falk, S. et al. Evaluating the ability of citizen scientists to identify bumblebee (Bombus) species. PLoS ONE 14, e0218614 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Bloom, E. H. & Crowder, D. W. Promoting data collection in pollinator citizen science projects. Citiz. Sci. Theory Pract. 5(1), 3 https://doi.org/10.5334/cstp.217 (2020).

  • 23.

    Levé, M., Baudry, E. & Bessa-Gomes, C. Domestic gardens as favorable pollinator habitats in impervious landscapes. Sci. Total Environ. 647, 420–430 (2019).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 24.

    Mason, L. & Arathi, H. S. Assessing the efficacy of citizen scientists monitoring native bees in urban areas. Glob. Ecol. Conserv. 17, e00561 (2019).

    Article  Google Scholar 

  • 25.

    Sheffield, C. S. et al. Contribution of DNA barcoding to the study of the bees (Hymenoptera: Apoidea) of Canada: Progress to date. Can. Entomol. 149, 736–754 (2017).

    Article  Google Scholar 

  • 26.

    Sheffield, C. S., Hebert, P. D. N., Kevan, P. G. & Packer, L. DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Mol. Ecol. Resour. 9, 196–207 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Schmidt, S., Schmid-Egger, C., Morinière, J., Haszprunar, G. & Hebert, P. D. N. DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim ). Mol. Ecol. Resour. 15, 985–1000 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Packer, L. & Ruz, L. DNA barcoding the bees (Hymenoptera: Apoidea) of Chile: Species discovery in a reasonably well known bee fauna with the description of a new species of Lonchopria (Colletidae). Genome 60, 414–430 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Tang, M. et al. High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol. Evol. 6, 1034–1043 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Sonet, G. et al. Using next-generation sequencing to improve DNA barcoding: Lessons from a small-scale study of wild bee species (Hymenoptera, Halictidae). Apidologie 49, 671–685 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Creedy, T. J. et al. A validated workflow for rapid taxonomic assignment and monitoring of a national fauna of bees (Apiformes) using high throughput DNA barcoding. Mol. Ecol. Resour. 20, 40–53 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Gueuning, M. et al. Evaluating next-generation sequencing (NGS) methods for routine monitoring of wild bees: Metabarcoding, mitogenomics or NGS barcoding. Mol. Ecol. Resour. 19, 847–862 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Lanner, J., Curto, M., Pachinger, B., Neumüller, U. & Meimberg, H. Illumina midi-barcodes: Quality proof and applications. Mitochondrial DNA Part A 30, 490–499 (2019).

    CAS  Article  Google Scholar 

  • 34.

    González-Vaquero, R. A., Roig-Alsina, A. & Packer, L. DNA barcoding as a useful tool in the systematic study of wild bees of the tribe Augochlorini (Hymenoptera: Halictidae). Genome 59, 889–898 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 35.

    Gibbs, J. DNA barcoding a nightmare taxon: Assessing barcode index numbers and barcode gaps for sweat bees. Genome 61, 21–31 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Dorey, J. P., Schwarz, M. P. & Stevens, M. I. Review of the bee genus Homalictus Cockerell (Hymenoptera: Halictidae) from Fiji with description of nine new species. Zootaxa 4674, 1–46 (2019).

    Article  Google Scholar 

  • 37.

    Williams, P. H. et al. Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst. Biodivers. 10, 21–56 (2012).

    Article  Google Scholar 

  • 38.

    Magnacca, K. N. & Brown, M. J. F. DNA barcoding a regional fauna: Irish solitary bees. Mol. Ecol. Resour. 12, 990–998 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    de Waard, J. R. et al. A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Sci. Data 6, 308 (2019).

    Article  CAS  Google Scholar 

  • 40.

    Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Gueuning, M., Frey, J. E. & Praz, C. Ultraconserved yet informative for species delimitation: UCEs resolve long-standing systematic enigma in Central European bees. Mol. Ecol. Mec. https://doi.org/10.1111/mec.15629 (2020).

    Article  Google Scholar 

  • 42.

    Phillips, J. D., French, S. H., Hanner, R. H. & Gillis, D. J. HACSim: An R package to estimate intraspecific sample sizes for genetic diversity assessment using haplotype accumulation curves. PeerJ Comput. Sci. 6, e243 (2020).

    Article  Google Scholar 

  • 43.

    Phillips, J. D., Gwiazdowski, R. A., Ashlock, D. & Hanner, R. An exploration of sufficient sampling effort to describe intraspecific DNA barcode haplotype diversity: Examples from the ray-finned fishes (Chordata: Actinopterygii). DNA Barcodes 3(1), 66–73 (2015).

  • 44.

    Phillips, J. D., Gillis, D. J. & Hanner, R. H. Incomplete estimates of genetic diversity within species: Implications for DNA barcoding. Ecol. Evol. 9, 2996–3010 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Muséum national d’Histoire naturelle (ed). 2003-2020. Inventaire National du Patrimoine Naturel. https://inpn.mnhn.fr.

  • 46.

    Zayed, A., Constantin, ŞA. & Packer, L. Successful biological invasion despite a severe genetic load. PLoS ONE 2, e868 (2007).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Lecocq, T. et al. The alien’s identity: Consequences of taxonomic status for the international bumblebee trade regulations. Biol. Conserv. 195, 169–176 (2016).

    Article  Google Scholar 

  • 48.

    Danforth, B. N. Phylogeny of the bee genus Lasioglossum (Hymenoptera: Halictidae) based on mitochondrial COI sequence data. Syst. Entomol. 24, 377–393 (1999).

    Article  Google Scholar 

  • 49.

    Hebert, P. D. N. et al. A Sequel to Sanger: Amplicon sequencing that scales. BMC Genom. 19, 219 (2018).

    Article  CAS  Google Scholar 

  • 50.

    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Carolan, J. C. et al. Colour patterns do not diagnose species: Quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS ONE 7, e29251 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Praz, C., Müller, A. & Genoud, D. Hidden diversity in European bees: Andrena amieti sp. n., a new Alpine bee species related to Andrena bicolor (Fabricius, 1775) (Hymenoptera, Apoidea, Andrenidae). Alp. Entomol. 3, 11–38 (2019).

    Article  Google Scholar 

  • 53.

    Pauly, A. Abeilles de Belgique et des régions limitrophes (Insecta: Hymenoptera: Apoidea) Famille Halictidae. (Institut royal des sciences naturelles de Belgique, 2019).

  • 54.

    Gonçalves, R. B. & Oliveira, P. S. Preliminary results of bowl trapping bees (Hymenoptera, Apoidea) in a southern Brazil forest fragment. J. Insect Biodivers. 1, 1–9 (2013).

    Article  Google Scholar 

  • 55.

    Buri, P., Humbert, J.-Y. & Arlettaz, R. Promoting pollinating insects in intensive agricultural matrices: Field-scale experimental manipulation of hay-meadow mowing regimes and its effects on bees. PLoS One 9(1), e85635 (2014).

  • 56.

    Rhoades, P. et al. Sampling technique affects detection of habitat factors influencing wild bee communities. J. Insect Conserv. 21, 703–714 (2017).

    Article  Google Scholar 

  • 57.

    Lettow, M. C. et al. Bee community responses to a gradient of oak savanna restoration practices. Restor. Ecol. 26, 882–890 (2018).

    Article  Google Scholar 

  • 58.

    Onuferko, T. M., Skandalis, D. A., Cordero, R. L. & Richards, M. H. Rapid initial recovery and long-term persistence of a bee community in a former landfill. Insect Conserv. Divers. 11, 88–99 (2018).

    Article  Google Scholar 

  • 59.

    Geroff, R. K., Gibbs, J. & McCravy, K. W. Assessing bee (Hymenoptera: Apoidea) diversity of an Illinois restored tallgrass prairie: Methodology and conservation considerations. J. Insect Conserv. 18, 951–964 (2014).

    Article  Google Scholar 

  • 60.

    Griffin, S. R., Bruninga-Socolar, B., Kerr, M. A., Gibbs, J. & Winfree, R. Wild bee community change over a 26-year chronosequence of restored tallgrass prairie. Restor. Ecol. 25, 650–660 (2017).

    Article  Google Scholar 

  • 61.

    Ropars, L., Dajoz, I. & Geslin, B. La diversité des abeilles parisiennes. Osmia 7, 14–19 (2018).

    Article  Google Scholar 

  • 62.

    Portman, Z. M., Bruninga-Socolar, B. & Cariveau, D. P. The state of bee monitoring in the United States: A call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am. 113, 337–342 (2020).

    Article  Google Scholar 

  • 63.

    Magnacca, K. N. & Brown, M. J. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evol. Biol. 10, 174 (2010).

  • 64.

    Ballare, K. M. et al. Utilizing field collected insects for next generation sequencing: Effects of sampling, storage, and DNA extraction methods. Ecol. Evol. 9, 13690–13705 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Hill, G. E. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol. Evol. 6, 5831–5842 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Ascher, J. S. & Pickering, J.  Life bee species guide and world checklist (Hymenoptera Apoidea Anthophila). http://www.discoverlife.org/mp/20q?guide=Apoidea_species (2020).

  • 67.

    LaBerge, W. E. A revision of the bees of the genus Andrena of the western hemisphere. Part XI. Minor subgenera and subgeneric key. Trans. Am. Entomol. Soc. 111, 441–567 (1985).

    Google Scholar 

  • 68.

    Warncke, K. Die Untergattungen der westpalaarktischen Bienengattung Andrena F. Memorias e Estud Muséu Zool. da Univ. Coimbra 307, 1–110 (1968).

    Google Scholar 

  • 69.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 6: Andrena, Melitturga, Panurginus, Panurgus. Fauna Helv. 26, 1–317 (2010).

  • 70.

    Michener, C. The bees of the world. (Johns Hopkins University Press, Baltimore, 2000).

    Google Scholar 

  • 71.

    Michener, C. D. The Social Behavior of the Bees: A Comparative Study (Harvard University Press, Cambridge, 1974).

    Google Scholar 

  • 72.

    Pauly, A., Noël, G., Sonet, G., Notton, D. G. & Boevé, J.-L. Integrative taxonomy resuscitates two species in the Lasioglossum villosulum complex (Kirby, 1802) (Hymenoptera: Apoidea: Halictidae). Eur. J. Taxon. 541 (2019).

  • 73.

    Eberle, J., Ahrens, D., Mayer, C., Niehuis, O. & Misof, B. A plea for standardized nuclear markers in metazoan DNA taxonomy. Trends Ecol. Evol. 35, 336–345 (2020).

    PubMed  Article  Google Scholar 

  • 74.

    Roulston, T. H., Smith, S. A. & Brewster, A. L. A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) Fauna. J. Kansas Entomol. Soc. 80, 179–181 (2007).

    Article  Google Scholar 

  • 75.

    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).

    Article  Google Scholar 

  • 76.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 5: Ammobates, Ammobatoides, Anthophora, Biastes, Ceratina, Dasypoda, Epeoloides, Epeolus, Eucera, Macropis, Melecta, Melitta, Nomada, Pasites, Tetralonia, Thyreus, Xylocopa. Fauna Helv. 20, 1–356 (2007).

  • 77.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 2: Colletes, Dufourea, Hylaeus, Nomia, Nomioides, Rhophitoides, Rophites, Sphecodes, Systropha. Fauna Helv. 4, 1–239 (1999).

  • 78.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 3: Halictus, Lasioglossum. Fauna Helv. 6, 1–208 (2001).

  • 79.

    Amiet, F., Herrmann, M., Müller, A. & Neumeyer, R. Apidae 4: Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis. Fauna Helv. 9, 1–273 (2004).

  • 80.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS  PubMed  Google Scholar 

  • 81.

    Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).

  • 82.

    Katoh, K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 84.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 85.

    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 86.

    Wickham, H. ggplot2 (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-98141-3.

    Google Scholar 

  • 87.

    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 88.

    Nei, M. Molecular evolutionary genetics (Columbia University Press, New York, 1987).


  • Source: Ecology - nature.com

    King Climate Action Initiative announces new research to test and scale climate solutions

    The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland)