in

Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels

[adace-ad id="91168"]
  • 1.

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Vilà, M. & Hulme, P. (eds) Impact of Biological Invasions on Ecosystem Services (Springer International Publishing, Berlin, 2017).

    Google Scholar 

  • 3.

    Gaertner, M., Den Breeyen, A., Hui, C. & Richardson, D. M. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog. Phys. Geogr. Earth Environ. 33, 319–338 (2009).

    Article 

    Google Scholar 

  • 4.

    Belnap, J., Phillips, S. L., Sherrod, S. K. & Moldenke, A. Soil biota can change after exotic plant invasion: does this affect ecosystem processes?. Ecology 86, 3007–3017 (2005).

    Article 

    Google Scholar 

  • 5.

    Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 177, 706–714 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Boscutti, F. et al. Cascading effects from plant to soil elucidate how the invasive Amorpha fruticosa L. impacts dry grasslands. J. Veg. Sci. 31(4), 667–677 (2020).

    Article 

    Google Scholar 

  • 7.

    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Vilà, M. & Ibáñez, I. Plant invasions in the landscape. Landsc. Ecol. 26, 461–472 (2011).

    Article 

    Google Scholar 

  • 9.

    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26(7), 333–339 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Kowarik, I. On the role of alien species in urban flora and vegetation. Plant invasions: general aspects and special problems. In SPB (eds Pysek, P. et al.) 85–103 (Academic Publishing, Amsterdam, 1995).

    Google Scholar 

  • 11.

    Hulme, P. E. Climate change and biological invasions: evidence, expectations, and response options. Biol. Rev. 92(3), 1297–1313 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol. 196(2), 383–396 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Alexander, J. M. et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl. Acad. Sci. 108, 656–661 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Hulme, P. E. Relative roles of life-form, land use and climate in recent dynamics of alien plant distributions in the British Isles. Weed Res. 49(1), 19–28 (2009).

    Article 

    Google Scholar 

  • 15.

    Milbau, A., Stout, J. C., Graae, B. J. & Nijs, I. A hierarchical framework for integrating invasibility experiments incorporating different factors and spatial scales. Biol. Invasions 11(4), 941–950 (2009).

    Article 

    Google Scholar 

  • 16.

    González-Moreno, P., Diez, J. M., Ibáñez, I., Font, X. & Vilà, M. Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Divers. Distrib. 20(6), 720–731 (2014).

    Article 

    Google Scholar 

  • 17.

    Bradley, B. A., Wilcove, D. S. & Oppenheimer, M. Climate change increases risk of plant invasion in the Eastern United States. Biol. Invasions 12(6), 1855–1872 (2010).

    Article 

    Google Scholar 

  • 18.

    Cao, Y., Zhang, S. & Hu, W. Simulated warming enhances biological invasion of Solidago canadensis and Bidens frondosa by increasing reproductive investment and altering flowering phenology pattern. Sci. Rep. 8(1), 1–8 (2018).

    ADS 

    Google Scholar 

  • 19.

    Molina-Montenegro, M. A. & Naya, D. E. Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS ONE 7(10), e47620 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Gritti, E. S., Smith, B. & Sykes, M. T. Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J. Biogeogr. 33(1), 145–157 (2006).

    Article 

    Google Scholar 

  • 21.

    Colautti, R. I. & Barrett, S. C. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342(6156), 364–366 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Vitti, S., Pellegrini, E., Casolo, V., Trotta, G. & Boscutti, F. Contrasting responses of native and alien plant species to soil properties shed new light on the invasion of dune systems. J. Plant Ecol. 13, 667–675 (2020).

    Article 

    Google Scholar 

  • 23.

    Vilà, M., Pino, J. & Font, X. Regional assessment of plant invasions across different habitat types. J. Veg. Sci. 18, 35–42 (2007).

    Article 

    Google Scholar 

  • 24.

    Lambdon, P. W. et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101–149 (2008).

    Google Scholar 

  • 25.

    Botham, M. S. et al. Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers. Distrib. 15, 338–345 (2009).

    Article 

    Google Scholar 

  • 26.

    Boscutti, F., Sigura, M., De Simone, S. & Marini, L. Exotic plant invasion in agricultural landscapes: A matter of dispersal mode and disturbance intensity. Appl. Veget. Sci. 21(2), 250–257 (2018).

    Article 

    Google Scholar 

  • 27.

    González-Moreno, P. et al. Quantifying the landscape influence on plant invasions in Mediterranean coastal habitats. Landsc. Ecol. 28(5), 891–903 (2013).

    Article 

    Google Scholar 

  • 28.

    Catford, J. A., Vesk, P. A., White, M. D. & Wintle, B. A. Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers. Distrib. 17(6), 1099–1110 (2011).

    Article 

    Google Scholar 

  • 29.

    McKinney, M. L. Urbanization, biodiversity, and conservation. The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bio. Sci. 52, 883–890 (2002).

    Google Scholar 

  • 30.

    Mattingly, W. B. & Orrock, J. L. Historic land use influences contemporary establishment of invasive plant species. Oecologia 172(4), 1147–1157 (2013).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Chytrý, M. et al. Separating Habitat Invasibility by Alien Plants from the Actual Level of Invasion. Ecology 89, 1541–1553 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Jauni, M. & Hyvönen, T. TInvasion level of alien plants in semi-natural agricultural habitats in boreal region. Agric. Ecosyst. Environ. 138, 109–115 (2010).

    Article 

    Google Scholar 

  • 33.

    Carboni, M., Thuiller, W., Izzi, F. & Acosta, A. Disentangling the relative effects of environmental versus human factors on the abundance of native and alien plant species in Mediterranean sandy shores. Divers. Distrib. 16(4), 537–546 (2010).

    Article 

    Google Scholar 

  • 34.

    O’Reilly-Nugent, A. et al. Landscape effects on the spread of invasive species. Curr. Landsc. Ecol. Rep. 1, 107–114 (2016).

    Article 

    Google Scholar 

  • 35.

    Stohlgren, T. J. et al. Species richness and patterns of invasions in plants, birds and fishes in the United States. Biol. Invasions 8, 427–444 (2006).

    Article 

    Google Scholar 

  • 36.

    Chytrý, M. et al. Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 45, 448–458 (2008).

    Article 

    Google Scholar 

  • 37.

    Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. 107(27), 12157–12162 (2010).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Szymura, T. H., Szymura, M., Zając, M. & Zając, A. Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of alien plant invasion at regional scale. Sci. Total Environ. 626, 1373–1381 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Marini, L. et al. Alien and native plant life-forms respond differently to human and climate pressures. Global Ecol. Biogeogr. 21, 534–544 (2012).

    Article 

    Google Scholar 

  • 40.

    Buccheri, M., Boscutti, F., Pellegrini, E. & Martini, F. Alien flora in Friuli Venezia Giulia. Gortania 40, 7–78 (2019) (in Italian).

    Google Scholar 

  • 41.

    Barros, A. & Pickering, C. M. Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the Southern Hemisphere. Mt. Res. Dev. 34(1), 13–26 (2014).

    Article 

    Google Scholar 

  • 42.

    Boscutti, F. et al. Conservation tillage affects species composition but not species diversity: a comparative study in northern Italy. Environ. Manag. 55(2), 443–452 (2015).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Galasso, G. et al. An updated checklist of the vascular flora alien to Italy . Plant Biosyst Int. J. Deal. Asp. Plant Biol. 152, 556–592 (2018).

    Google Scholar 

  • 44.

    Gao, T. et al. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evol. Biol. 10(1), 324 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 29(2), 360–369 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Hamilton, M. A. et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett. 8, 1066–1074 (2005).

    Article 

    Google Scholar 

  • 47.

    Ahern, R. G., Landis, D. A., Reznicek, A. A. & Schemske, D. W. Spread of exotic plants in the landscape: the role of time, growth habit, and history of invasiveness. Biol. Invasions 12(9), 3157–3169 (2010).

    Article 

    Google Scholar 

  • 48.

    Ohlemüller, R., Walker, S. & Bastow Wilson, J. Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112, 493–501 (2006).

    Article 

    Google Scholar 

  • 49.

    Zhu, L., Sun, O. J., Sang, W., Li, Z. & Ma, K. Predicting the spatial distribution of an invasive plant species (Eupatorium adenophorum) in China. Landsc. Ecol. 22(8), 1143–1154 (2007).

    Article 

    Google Scholar 

  • 50.

    Timsina, B., Shrestha, B. B., Rokaya, M. B. & Münzbergová, Z. Impact of Parthenium hysterophorus L. invasion on plant species composition and soil properties of grassland communities in Nepal. Flora-Morphol. Distrib. Funct. Ecol. Plants 206(3), 233–240 (2011).

    Article 

    Google Scholar 

  • 51.

    Francis, A. P. & Currie, D. J. A globally consistent richness-climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).

    Article 

    Google Scholar 

  • 53.

    Tordoni, E. et al. Climate and landscape heterogeneity drive spatial pattern of endemic plant diversity within local hotspots in South-Eastern Alps. Perspect. Plant. Ecol. 43, 125512 (2020).

    Article 

    Google Scholar 

  • 54.

    Alpert, P., Bone, E. & Holzapfel, C. Invasiveness, invisibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 3, 52–66 (2000).

    Article 

    Google Scholar 

  • 55.

    Richardson, D. & Pyšek, P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409 (2006).

    Article 

    Google Scholar 

  • 56.

    Marini, L. et al. Beta diversity and alien plant invasion. Global Ecol. Biogeogr. 22, 450–460 (2013).

    Article 

    Google Scholar 

  • 57.

    Haider, S. et al. Mountain roads and non-native species modify elevational patterns of plant diversity. Global Ecol. Biogeogr. 27, 667–678 (2018).

    Article 

    Google Scholar 

  • 58.

    Qian, H. & Ricklefs, R. E. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 9(12), 1293–1298 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Roy, D. B., Hill, M. O. & Rothery, P. Effects of urban land cover on the local species pool in Britain. Ecography 22, 507–515 (1999).

    Article 

    Google Scholar 

  • 60.

    McIntyre, S. & Lavorel, S. Predicting richness of native, rare, and exotic plants in response to habitat and disturbance variables across a variegated landscape. Conserv. Biol. 8(2), 521–531 (1994).

    Article 

    Google Scholar 

  • 61.

    Aikio, S., Duncan, R. P. & Hulme, P. E. The vulnerability of habitats to plant invasion: disentangling the roles of propagule pressure, time and sampling effort. Glob. Ecol. Biogeogr. 21, 778–786 (2012).

    Article 

    Google Scholar 

  • 62.

    Cilliers, S. S., Williams, N. S. G. & Barnard, F. J. Patterns of exotic plant invasions in fragmented urban and rural grasslands across continents. Landsc. Ecol. 23, 1243–1256 (2008).

    Article 

    Google Scholar 

  • 63.

    Pyšek, P. Alien and native species in Central European urban floras: a quantitative comparison. J. Biogeogr. 25, 155–163 (1998).

    Article 

    Google Scholar 

  • 64.

    Hulme, P.E. Nursery crimes: agriculture as victim and perpetrator in the spread of invasive species. Crop Sci. Technol. 733–740 (2005).

  • 65.

    McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Invasions 20, 3461–3473 (2018).

    Article 

    Google Scholar 

  • 66.

    Groves, R. H., Austin, M. P. & Kaye, P. E. Competition between Australian native and introduced grasses along a nutrient gradient. Austral. Ecol. 28, 491–498 (2003).

    Article 

    Google Scholar 

  • 67.

    Dupouey, J. L., Dambrine, E., Laffite, J. D. & Moares, C. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83(11), 2978–2984 (2002).

    Article 

    Google Scholar 

  • 68.

    Foster, D. et al. The importance of land-use legacies to ecology and conservation. Bioscience 53(1), 77–88 (2003).

    Article 

    Google Scholar 

  • 69.

    Spooner, P. G. & Lunt, I. D. The influence of land-use history on roadside conservation values in an Australian agricultural landscape. Aust. J. Bot. 52, 445–458 (2004).

    Article 

    Google Scholar 

  • 70.

    Lindborg, R., Plue, J., Andersson, K. & Cousins, S. A. O. Function of small habitat elements for enhancing plant diversity in different agricultural landscapes. Biol. Conserv. 169, 206–213 (2014).

    Article 

    Google Scholar 

  • 71.

    Dorrough, J. & Scroggie, M. P. Plant responses to agricultural intensification. J. Appl. Ecol. 45(4), 1274–1283 (2008).

    Article 

    Google Scholar 

  • 72.

    Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Deutschewitz, K., Lausch, A., Kühn, I. & Klotz, S. Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob. Ecol. Biogeogr. 12(4), 299–311 (2003).

    Article 

    Google Scholar 

  • 74.

    Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, Chichester, 1979).

    Google Scholar 

  • 75.

    Molino, J. F. & Sabatier, D. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547), 1702–1704 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article 

    Google Scholar 

  • 77.

    Carulli, G.B. Carta geologica del Friuli Venezia Giulia (scale 1:150000) (Geological Map of Friuli Venezia Giulia, scale 1:150000). Ed. S.E.L.C.A. Firenze (2006).

  • 78.

    Gortani, L. & Gortani, M. Flora friulana con particolare riguardo alla Carnia. Udine: ed. Tipografia Doretti (in Italian) (1906).

  • 79.

    Bonfanti, P., Fregonese, A. & Sigura, M. Landscape analysis in areas affected by land consolidation. Landsc. Urban Plan. 37(1–2), 91–98 (1997).

    Article 

    Google Scholar 

  • 80.

    Ehrendorfer, F. & Hamann, U. Vorschläge zu einer floristischen Kartierung von Mitteleuropa. Berichte der Deutschen Botanischen Gesellschaft (in German) (1965).

  • 81.

    Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy . Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 152, 179–303 (2018).

    Google Scholar 

  • 82.

    Engelen, G., Lavalle, C., Barredo, J. I., Van der Meulen, M. & White, R. The moland modelling framework for urban and regional land-use dynamics. In Modelling Land-Use Change: Progress and Applications (eds Koomen, E. et al.) 297–320 (Springer , Berlin, 2007).

    Google Scholar 

  • 83.

    Quantum GIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2017).

  • 84.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    Article 

    Google Scholar 

  • 85.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications , Thousand Oaks, 2011).

    Google Scholar 

  • 86.

    Dormann, C. F. et al. Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Glob. Ecol. Biogeogr. 16, 774–787 (2007).

    Article 

    Google Scholar 

  • 87.

    Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-Plus (Springer , Berlin, 2000).

    Google Scholar 

  • 88.

    R Core Team R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

    Google Scholar 

  • 89.

    Barton, K. MuMIn: Multi-model inference. R package version 1.15.6 (2016).

  • 90.

    Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & R core team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–131 (2017).

  • 91.

    Burham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference—A Pratical Information-Theoretic Approach (Springer , Berlin, 2002).

    Google Scholar 


  • Source: Ecology - nature.com

    Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum

    Olfactory signals and fertility in olive baboons