in

American martens use vigilance and short-term avoidance to navigate a landscape of fear from fishers at artificial scavenging sites

[adace-ad id="91168"]
  • 1.

    Case, T. J. & Gilpin, M. E. Interference competition and niche theory. Proc. Natl. Acad. Sci. 71, 3073–3077 (1974).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Linnell, J. D. & Strand, O. Interference interactions, co-existence and conservation of mammalian carnivores. Divers. Distrib. 6, 169–176 (2000).

    Article 

    Google Scholar 

  • 3.

    Prugh, L. R. & Sivy, K. J. Enemies with benefits: Integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. 23, 902–918 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330 (1989).

    Article 

    Google Scholar 

  • 5.

    Belant, J. L., Griffith, B., Zhang, Y., Follmann, E. H. & Adams, L. G. Population-level resource selection by sympatric brown and American black bears in Alaska. Polar Biol. 33, 31–40 (2010).

    Article 

    Google Scholar 

  • 6.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article 

    Google Scholar 

  • 7.

    Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: Reestablishing the “landscape of fear” in Yellowstone National Park, USA. Can. J. Zool. 79, 1401–1409 (2001).

    Article 

    Google Scholar 

  • 8.

    Moll, R. J. et al. The many faces of fear: A synthesis of the methodological variation in characterizing predation risk. J. Anim. Ecol. 86, 749–765 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 638–652 (2018).

    Article 

    Google Scholar 

  • 10.

    Kuijper, D. P. J. et al. Landscape of fear in Europe: Wolves affect spatial patterns of ungulate browsing in Białowieża Primeval Forest, Poland. Ecography 36, 1263–1275 (2013).

    Article 

    Google Scholar 

  • 11.

    Smith, J. A., Donadio, E., Pauli, J. N., Sheriff, M. J. & Middleton, A. D. Integrating temporal refugia into landscapes of fear: Prey exploit predator downtimes to forage in risky places. Oecologia 189, 883–890 (2019).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Flagel, D. G., Belovsky, G. E. & Beyer, D. E. Natural and experimental tests of trophic cascades: Gray wolves and white-tailed deer in a Great Lakes forest. Oecologia 180, 1183–1194 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: Spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Prugh, L. R. et al. Designing studies of predation risk for improved inference in carnivore-ungulate systems. Biol. Conserv. 232, 194–207 (2019).

    Article 

    Google Scholar 

  • 15.

    Fisher, J. T., Anholt, B., Bradbury, S., Wheatley, M. & Volpe, J. P. Spatial segregation of sympatric marten and fishers: The influence of landscapes and species-scapes. Ecography 36, 240–248 (2013).

    Article 

    Google Scholar 

  • 16.

    Manlick, P. J., Woodford, J. E., Zuckerberg, B. & Pauli, J. N. Niche compression intensifies competition between reintroduced American martens (Martes americana) and fishers (Pekania pennanti). J. Mammal. 98, 690–702 (2017).

    Article 

    Google Scholar 

  • 17.

    Powell, R. A., Buskirk, S. W., & Zielinski, W. J. Fisher and marten. In Wild Mammals of North America: Biology, Management, and Conservation (eds. Feldhamer, G. A et al.), 635–649 (JHU Press, 2003).

  • 18.

    Krohn, W. B., Elowe, K. D. & Boone, R. B. Relations among fishers, snow, and martens: Development and evaluation of two hypotheses. For. Chron. 71, 97–105 (1995).

    Article 

    Google Scholar 

  • 19.

    Williams, B. W., Gilbert, J. H., & Zollner, P. A. Historical Perspective on the Reintroduction of the Fisher and American Marten in Wisconsin and Michigan, vol. 5. (US Department of Agriculture, Forest Service, Northern Research Station, 2007).

  • 20.

    McCann, N. P., Zollner, P. A. & Gilbert, J. H. Survival of adult martens in northern Wisconsin. J. Wildl. Manag. 74, 1502–1507 (2010).

    Article 

    Google Scholar 

  • 21.

    Kupferman, C. A. An Expanding Meso-Carnivore: Fisher (Pekania pennanti) Occupancy and Coexistence with Native Mustelids in Southeast Alaska (University of Idaho, 2019).

    Google Scholar 

  • 22.

    Hall, L. K. et al. Vigilance of kit foxes at water sources: A test of competing hypotheses for a solitary carnivore subject to predation. Behav. Proc. 94, 76–82 (2013).

    Article 

    Google Scholar 

  • 23.

    Chitwood, M. C., Lashley, M. A., Higdon, S. D., DePerno, C. S. & Moorman, C. E. Raccoon vigilance and activity patterns when sympatric with coyotes. Diversity 12, 341 (2020).

    Article 

    Google Scholar 

  • 24.

    Vanak, A. T., Thaker, M. & Gompper, M. E. Experimental examination of behavioural interactions between free-ranging wild and domestic canids. Behav. Ecol. Sociobiol. 64, 279–287 (2009).

    Article 

    Google Scholar 

  • 25.

    Croose, E., Bled, F., Fowler, N. L., Beyer, D. E. Jr. & Belant, J. L. American marten and fisher do not segregate in space and time during winter in a mixed-forest system. Ecol. Evol. 9, 4906–4916 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Gilbert, J. H., Zollner, P. A., Green, A. K., Wright, J. L. & Karasov, W. H. Seasonal field metabolic rates of American martens in Wisconsin. Am. Midl. Nat. 162, 327–334 (2009).

    Article 

    Google Scholar 

  • 27.

    Hughes, N. K., Price, C. J. & Banks, P. B. Predators are attracted to the olfactory signals of prey. PLoS ONE 5, e13114 (2010).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Bytheway, J. P., Carthey, A. J. & Banks, P. B. Risk vs. reward: How predators and prey respond to aging olfactory cues. Behav. Ecol. Sociobiol. 67, 715–725 (2013).

    Article 

    Google Scholar 

  • 29.

    Haynes, G. Utilization and skeletal disturbances of North American prey carcasses. Arctic 35, 266–281 (1982).

    Article 

    Google Scholar 

  • 30.

    Kaufmann, J. H. On the definitions and functions of dominance and territoriality. Biol. Rev. 58, 1–20 (1983).

    Article 

    Google Scholar 

  • 31.

    Zielinski, W. J., Tucker, J. M. & Rennie, K. M. Niche overlap of competing carnivores across climatic gradients and the conservation implications of climate change at geographic range margins. Biol. Conserv. 209, 533–545 (2017).

    Article 

    Google Scholar 

  • 32.

    Jensen, P. G. & Humphries, M. M. Abiotic conditions mediate intraguild interactions between mammalian carnivores. J. Anim. Ecol. 88, 1305–1318 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Manlick, P. J., Windels, S. K., Woodford, J. E. & Pauli, J. N. Can landscape heterogeneity promote carnivore coexistence in human-dominated landscapes?. Landsc. Ecol. 35, 2013–2027 (2020).

    Article 

    Google Scholar 

  • 34.

    Krohn, W., Hoving, C., Harrison, D., Phillips, D., & Frost, H. Martes foot-loading and snowfall patterns in eastern North America. In Martens and Fishers (Martes) in Human-Altered Environments (eds. Harrison, D. J. et al.) 115–131 (Springer, 2005).

  • 35.

    Hiller, T. L., Etter, D. R., Belant, J. L. & Tyre, A. J. Factors affecting harvests of fishers and American martens in northern Michigan. J. Wildl. Manag. 75, 1399–1405 (2011).

    Article 

    Google Scholar 

  • 36.

    Childress, M. J. & Lung, M. A. Predation risk, gender and the group size effect: Does elk vigilance depend upon the behaviour of conspecifics?. Anim. Behav. 66, 38–398 (2003).

    Article 

    Google Scholar 

  • 37.

    Gehr, B. et al. Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Bull, E. L. & Heater, T. W. Survival, causes of mortality, and reproduction in the American marten in northeastern Oregon. Northwest. Nat. 82, 1–6 (2001).

    Article 

    Google Scholar 

  • 39.

    White, K. S., Golden, H. N., Hundertmark, K. J. & Lee, G. R. Predation by wolves, Canis lupus, on wolverines, Gulo gulo, and an American marten, Martes americana, Alaska. Can. Field Nat. 116, 132–134 (2002).

    Google Scholar 

  • 40.

    Erb, J., Sampson, B., & Coy, P. Survival and causes of mortality for fisher and marten in Minnesota. Minnesota Department of Natural Resources Summary of Wildlife Research Findings2009, 24–31 (2009).

  • 41.

    Wengert, G. M., Gabriel, M. W., Foley, J. E., Kun, T. & Sacks, B. N. Molecular techniques for identifying intraguild predators of fishers and other North American small carnivores. Wildl. Soc. Bull. 37, 659–663 (2013).

    Google Scholar 

  • 42.

    Stricker, H. K. et al. Use of modified snares to estimate bobcat abundance. Wildl. Soc. Bull. 36, 257–263 (2012).

    Article 

    Google Scholar 

  • 43.

    Kautz, T. M. et al. Predator densities and white-tailed deer fawn survival. J. Wildl. Manag. 83, 1261–1270 (2019).

    Article 

    Google Scholar 

  • 44.

    Caravaggi, A. et al. A review of camera trapping for conservation behaviour research. Remote Sens. Ecol. Conserv. 3, 109–122 (2017).

    Article 

    Google Scholar 

  • 45.

    Berger, K. M. & Gese, E. M. Does interference competition with wolves limit the distribution and abundance of coyotes?. J. Anim. Ecol. 76, 1075–1085 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Merkle, J. A., Stahler, D. R. & Smith, D. W. Interference competition between gray wolves and coyotes in Yellowstone National Park. Can. J. Zool. 87, 56–63 (2009).

    Article 

    Google Scholar 

  • 47.

    Crimmins, S. M. & Van Deelen, T. R. Limited evidence for mesocarnivore release following wolf recovery in Wisconsin, USA. Wildl. Biol. 2019, 1–7 (2019).

    Article 

    Google Scholar 

  • 48.

    Petroelje, T. R., Belant, J. L., Beyer, D. E., & Kautz, T. M. Interference competition between wolves and coyotes during variable prey abundance. Ecol. Evol 11, 1413–1431 (2021).

  • 49.

    Switalski, T. A. Coyote foraging ecology and vigilance in response to gray wolf reintroduction in Yellowstone National Park. Can. J. Zool. 81, 985–993 (2003).

    Article 

    Google Scholar 

  • 50.

    Hilborn, A. et al. Cheetahs modify their prey handling behavior depending on risks from top predators. Behav. Ecol. Sociobiol. 72, article 74 (2018).

    Article 

    Google Scholar 

  • 51.

    Elgar, M. A. Predator vigilance and group size in mammals and birds: A critical review of the empirical evidence. Biol. Rev. 64, 13–33 (1989).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Bøving, P. S. & Post, E. Vigilance and foraging behaviour of female caribou in relation to predation risk. Rangifer 17, 55–63 (1997).

    Article 

    Google Scholar 

  • 53.

    Hunter, L. T. B. & Skinner, J. D. Vigilance behaviour in African ungulates: The role of predation pressure. Behaviour 135, 195–211 (1998).

    Article 

    Google Scholar 

  • 54.

    Liley, S. & Creel, S. What best explains vigilance in elk: Characteristics of prey, predators, or the environment?. Behav. Ecol. 19, 245–254 (2008).

    Article 

    Google Scholar 

  • 55.

    Makin, D. F., Chamaillé-Jammes, S. & Shrader, A. M. Herbivores employ a suite of antipredator behaviours to minimize risk from ambush and cursorial predators. Anim. Behav. 127, 225–231 (2017).

    Article 

    Google Scholar 

  • 56.

    Wikenros, C., Ståhlberg, S. & Sand, H. Feeding under high risk of intraguild predation: Vigilance patterns of two medium-sized generalist predators. J. Mammal. 95, 862–870 (2014).

    Article 

    Google Scholar 

  • 57.

    Welch, R. J., le Roux, A., Petelle, M. B. & Périquet, S. The influence of environmental and social factors on high-and low-cost vigilance in bat-eared foxes. Behav. Ecol. Sociobiol. 72, article 29 (2018).

    Article 

    Google Scholar 

  • 58.

    Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote. Sens. 146, 108–123 (2018).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Lovallo, M. J. & Anderson, E. M. Bobcat (Lynx rufus) home range size and habitat use in northwest Wisconsin. Am. Midl. Nat. 135, 241–252 (1996).

    Article 

    Google Scholar 

  • 60.

    Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).

    Article 

    Google Scholar 

  • 61.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 62.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed Aug 2020.

  • 63.

    National Operational Hydrologic Remote Sensing Center. Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1. Boulder, Colorado USA. https://doi.org/10.7265/N5TB14TC (NSIDC: National Snow and Ice Data Center, 2004).

  • 64.

    Hutchings, M. R. & White, P. C. Mustelid scent-marking in managed ecosystems: Implications for population management. Mammal Rev. 30, 157–169 (2000).

    Article 

    Google Scholar 

  • 65.

    Mumm, C. A., & Knörnschild, M. Mustelid Communication. In Encyclopedia of Animal Cognition and Behavior (ed. Choe, J.), 1–11 (Springer International, 2018).

  • 66.

    Sullivan, T. P., Nordstrom, L. O. & Sullivan, D. S. Use of predator odors as repellents to reduce feeding damage by herbivores. J. Chem. Ecol. 11, 903–919 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT J-WAFS awards eight grants in seventh round of seed funding

    Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific