in

Analysis of complex trophic networks reveals the signature of land-use intensification on soil communities in agroecosystems

[adace-ad id="91168"]
  • 1.

    Brussaard, L., Ruiter, P. C. & Brown, G. G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 (2007).

    Article 

    Google Scholar 

  • 2.

    Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).

    Article 

    Google Scholar 

  • 3.

    El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Secur. 20, 132–144 (2019).

    Article 

    Google Scholar 

  • 4.

    Bardgett, R. D. & Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Kardol, P. & De Long, J. R. How anthropogenic shifts in plant community composition alter soil food webs. F1000Res 7, 4 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Smith, P. et al. Global change pressures on soils from land-use and management. Glob. Change Biol. 22, 1008–1028 (2016).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Geisen, S. et al. A methodological framework to embrace soil biodiversity. Soil Biol. Biochem. 136, 107536 (2019).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Creamer, R. E. et al. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl. Soil. Ecol. 97, 112–124 (2016).

    Article 

    Google Scholar 

  • 9.

    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).

    ADS 
    Article 

    Google Scholar 

  • 10.

    de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. PNAS 110, 14296–14301 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Ponge, J. F. et al. Collembolan communities as bioindicators of land-use intensification. Soil Biol. Biochem. 35, 813–826 (2003).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Postma-Blaauw, M. B., de Goede, R. G. M., Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460–473 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Decaëns, T. & Jiménez, J. J. Earthworm communities under an agricultural intensification gradient in Colombia. Plant Soil 240, 133–143 (2002).

    Article 

    Google Scholar 

  • 14.

    Dequiedt, S. et al. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Globa. Ecol. Biogeogr. 20, 641–652 (2011).

    Article 

    Google Scholar 

  • 15.

    Thomson, B. C. et al. Soil conditions and land-use intensification effects on soil microbial communities across a range of European field sites. Soil Biol. Biochem. 88, 403–413 (2015).

    CAS 
    Article 

    Google Scholar 

  • 16.

    de Graaff, M. A., Hornslein, N., Throop, H., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: A meta-analysis. Adv. Agron. 155, 1–44 (2019).

    Article 

    Google Scholar 

  • 17.

    Karimi, B. et al. Biogeography of soil bacterial networks along a gradient of cropping intensity. Sci. Rep. 9, 3812 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Wardle, D. A., Nicholson, K. S., Bonner, K. I. & Yeates, G. W. Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biol. Biochem. 31, 1691–1706 (1999).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Article 

    Google Scholar 

  • 21.

    Freilich, M. A., Wieters, E., Broitman, B. R., Marquet, P. A. & Navarrete, S. A. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?. Ecology 99, 690–699 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Gray, C. et al. FORUM: Ecological networks: The missing links in biomonitoring science. J. Appl. Ecol. 51, 1444–1449 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Evans, D., Kitson, J., Lunt, D., Straw, N. & Pocock, M. Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct. Ecol. 30, 1904–1916 (2016).

    Article 

    Google Scholar 

  • 24.

    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, 00547 (2019).

    Google Scholar 

  • 25.

    Taberlet, P., Coissac, E., Hajibabaei, M. & Rieseberg, L. H. Environmental DNA. Mol. Ecol. 21, 1789–1793 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Vacher, C. et al. Chapter one—Learning ecological networks from next-generation sequencing data. Adv. Ecol. Res. 54, 1–39 (2016).

    Article 

    Google Scholar 

  • 27.

    Poelen, J. H., Simons, J. D. & Mungall, C. J. Global biotic interactions: An open infrastructure to share and analyze species-interaction datasets. Ecol. Inform. 24, 148–159 (2014).

    Article 

    Google Scholar 

  • 28.

    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar 

  • 29.

    Dopheide, A. et al. Rarity is a more reliable indicator of land-use impacts on soil invertebrate communities than other diversity metrics. Elife 9, e52787 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    García-Callejas, D., Molowny-Horas, R. & Araújo, M. B. Multiple interactions networks: Towards more realistic descriptions of the web of life. Oikos 127, 5–22 (2018).

    Article 

    Google Scholar 

  • 31.

    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).

    Article 

    Google Scholar 

  • 32.

    Morrison, B. M. L., Brosi, B. J. & Dirzo, R. Agricultural intensification drives changes in hybrid network robustness by modifying network structure. Ecol. Lett. 23, 359–369 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Thakur, M. P. & Wright, A. J. Environmental filtering, niche construction, and trait variability: The missing discussion. Trends Ecol. Evol. 32, 884–886 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Xue, L. et al. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. For. Ecol. Manag. 459, 117805 (2020).

    Article 

    Google Scholar 

  • 36.

    Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. PNAS https://doi.org/10.1073/pnas.2016210117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Erdozain, M. et al. Metabarcoding of storage ethanol vs. conventional morphometric identification in relation to the use of stream macroinvertebrates as ecological indicators in forest management. Ecol. Indic. 101, 173–184 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Moore, J. C., McCann, K., Setälä, H. & De Ruiter, P. C. Top-down is bottom-up: Does predation in the rhizosphere regulate aboveground dynamics?. Ecology 84, 846–857 (2003).

    Article 

    Google Scholar 

  • 40.

    Wollrab, S., Diehl, S. & De Roos, A. M. Simple rules describe bottom-up and top-down control in food webs with alternative energy pathways. Ecol. Lett. 15, 935–946 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    de Vries, F. T. & Wallenstein, M. D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 105, 913–920 (2017).

    Article 

    Google Scholar 

  • 42.

    de Vries, F. T. & Caruso, T. Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web. Soil Biol. Biochem. 102, 4–9 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Bramon Mora, B., Gravel, D., Gilarranz, L. J., Poisot, T. & Stouffer, D. B. Identifying a common backbone of interactions underlying food webs from different ecosystems. Nat. Commun. 9, 2603 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Malik, A. A. et al. Land-use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Jia, Y. & Whalen, J. K. Functional redundancy and phylogenetic niche conservatism in the soil microbial community. Pedosphere 30, 18–24 (2020).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Bush, A. et al. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. Proc. Natl. Acad. Sci. 117, 8539–8545 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

    Article 

    Google Scholar 

  • 49.

    Ruiz-Martinez, I., Marraccini, E., Debolini, M. & Bonari, E. Indicators of agricultural intensity and intensification: A review of the literature. Ital. J. Agron. 10, 74–84 (2015).

    Article 

    Google Scholar 

  • 50.

    Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (OUP Oxford, Oxford, 2018).

    Book 

    Google Scholar 

  • 51.

    Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 1816–1820 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Zinger, L. et al. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol. Biochem. 96, 16–19 (2016).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Compson, Z. G. et al. Chapter two—Linking DNA metabarcoding and text mining to create network-based biomonitoring tools: A case study on boreal wetland macroinvertebrate communities. Adv. Ecol. Res. 59, 33–74 (2018).

    Article 

    Google Scholar 

  • 55.

    G.B.I.F. GBIF backbone taxonomy. (2017).

  • 56.

    Allesina, S. & Pascual, M. Food web models: A plea for groups. Ecol. Lett. 12, 652–662 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Gauzens, B., Thébault, E., Lacroix, G. & Legendre, S. Trophic groups and modules: Two levels of group detection in food webs. J. R. Soc. Interface 12, 20141176 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Makiola, A. et al. Key questions for next-generation biomonitoring. Front. Environ. Sci. 7, 197 (2020).

    Article 

    Google Scholar 

  • 59.

    Nowicki, K. & Snijders, T. A. B. Estimation and prediction for stochastic block structures. J. Am. Stat. Assoc. 96, 1077–1087 (2001).

    MATH 
    Article 

    Google Scholar 

  • 60.

    Biernacki, C., Celeux, G. & Govaert, G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000).

    Article 

    Google Scholar 

  • 61.

    Compson, Z. G. et al. Network-based biomonitoring: Exploring freshwater food webs with stable isotope analysis and DNA metabarcoding. Front. Ecol. Evol. 7, 395 (2019).

    Article 

    Google Scholar 

  • 62.

    Ohlmann, M. et al. Diversity indices for ecological networks: A unifying framework using Hill numbers. Ecol. Lett. 22, 737–747 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Gauzens, B., Legendre, S., Lazzaro, X. & Lacroix, G. Intermediate predation pressure leads to maximal complexity in food webs. Oikos 125, 595–603 (2016).

    Article 

    Google Scholar 

  • 64.

    Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J. & Ellison, A. M. Ecological network metrics: Opportunities for synthesis. Ecosphere 8, 01900 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Researchers design sensors to rapidly detect plant hormones

    Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome