in

Antibiotic treatment increases yellowness of carotenoid feather coloration in male greenfinches (Chloris chloris)

[adace-ad id="91168"]
  • 1.

    Hill, G. E. Plumage coloration is a sexually selected indicator of male quality. Nature 350, 337 (1991).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Cantarero, A., Pérez-Rodríguez, L., Romero-Haro, A. Á., Chastel, O. & Alonso-Alvarez, C. Carotenoid-based coloration predicts both longevity and lifetime fecundity in male birds, but testosterone disrupts signal reliability. PLoS ONE 14, e0221436. https://doi.org/10.1371/journal.pone.0221436 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Zahavi, A. Mate selection—A selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Alonso-Alvarez, C. & Galván, I. Free radical exposure creates paler carotenoid-based ornaments: A possible interaction in the expression of black and red traits. PLoS ONE 6 (2011).

  • 5.

    Schantz, T. V., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition–dependent sexual signals. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 1–12 (1999).

    Article 

    Google Scholar 

  • 6.

    Tomášek, O. et al. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling. Sci. Rep. 6, 23546. https://doi.org/10.1038/srep23546 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 7.

    Sild, E., Sepp, T., Männiste, M. & Hõrak, P. Carotenoid intake does not affect immune-stimulated oxidative burst in greenfinches. J. Exp. Biol. 214, 3467–3473 (2011).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Mohr, A. E., Girard, M., Rowe, M., McGraw, K. J. & Sweazea, K. L. Varied effects of dietary carotenoid supplementation on oxidative damage in tissues of two waterfowl species. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 231, 67–74. https://doi.org/10.1016/j.cbpb.2019.02.003 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Costantini, D. & Møller, A. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2008).

    Article 

    Google Scholar 

  • 10.

    Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—A meta-analysis. PLoS ONE 7, e43088. https://doi.org/10.1371/journal.pone.0043088 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Hill, G. E. et al. Plumage redness signals mitochondrial function in the house finch. Proc. R. Soc. B 286, 20191354 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Hill, G. E. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol. Lett. 14, 625–634 (2011).

    Article 

    Google Scholar 

  • 13.

    del Cerro, S. et al. Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus). Oecologia 162, 825–835. https://doi.org/10.1007/s00442-009-1510-y (2010).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).

    Article 

    Google Scholar 

  • 15.

    Weaver, R. J., Santos, E. S., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Tyczkowski, J. K., Hamilton, P. B. & Ruff, M. D. Altered metabolism of carotenoids during pale-bird syndrome in chickens infected with Eimeria acervulina. Poult. Sci. 70, 2074–2081. https://doi.org/10.3382/ps.0702074 (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Joyner, L. et al. Amino-acid malabsorption and intestinal leakage of plasma-proteins in young chicks infected with Eimeria acervulina. Avian Pathol. 4, 17–33 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Sharma, V. & Fernando, M. Effect of Eimeria acervulina infection on nutrient retention with special reference to fat malabsorption in chickens. Can. J. Comp. Med. 39, 146 (1975).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Pout, D. D. Villous atrophy and coccidiosis. Nature 213, 306–307 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Sanches, A. W. D. et al. Basal and infectious enteritis in broilers under the I See inside methodology: A chronological evaluation. Front. Vet. Sci. 6, 512. https://doi.org/10.3389/fvets.2019.00512 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 21.

    Russell, J. Jr. & Ruff, M. Eimeria spp.: Influence of coccidia on digestion (amylolytic activity) in broiler chickens. Exp. Parasitol. 45, 234–240 (1978).

    Article 

    Google Scholar 

  • 22.

    Kouwenhoven, B. & van der Horst, C. J. Disturbed intestinal absorption of vitamin A and carotenes and the effect of a low pH during Eimeria acervulina infection in the domestic fowl (Gallus domesticus). Z. Parasitenkd. 38, 152–161 (1972).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Ruff, M. D. & Fuller, H. L. Some mechanisms of reduction of carotenoid levels in chickens infected with Eimeria acervulina or E. tenella. J. Nutr. 105, 1447–1456 (1975).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Swayne, D. E., Getzy, D., Slemons, R. D., Bocetti, C. & Kramer, L. Coccidiosis as a cause of transmural lymphocytic enteritis and mortality in captive Nashville warblers (Vermivora ruficapilla). J. Wildl. Dis. 27, 615–620 (1991).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Gosbell, M. C., Olaogun, O. M., Luk, K. & Noormohammadi, A. H. Investigation of systemic isosporosis outbreaks in an aviary of greenfinch (Carduelis chloris) and goldfinch (Carduelis carduelis) and a possible link with local wild sparrows (Passer domesticus). Aust. Vet. J. 98, 338–344 (2020).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Baeta, R., Faivre, B., Motreuil, S., Gaillard, M. & Moreau, J. Carotenoid trade-off between parasitic resistance and sexual display: An experimental study in the blackbird (Turdus merula). Proc. R. Soc. B Biol. Sci. 275, 427–434 (2008).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Amin, A., Bilic, I., Liebhart, D. & Hess, M. Trichomonads in birds—A review. Parasitology 141, 733–747 (2014).

    Article 

    Google Scholar 

  • 28.

    Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5 (2010).

  • 29.

    Chavatte, J.-M. et al. An outbreak of trichomonosis in European greenfinches Chloris chloris and European goldfinches Carduelis carduelis wintering in Northern France. Parasite 26, 21–21. https://doi.org/10.1051/parasite/2019022 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Huyghebaert, G., Ducatelle, R. & Immerseel, F. V. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187, 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Singer, R. S. & Hofacre, C. L. Potential impacts of antibiotic use in poultry production. Avian Dis. 50, 161–172, 112 (2006).

    Article 

    Google Scholar 

  • 32.

    Miles, R. D., Butcher, G. D., Henry, P. R. & Littell, R. C. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology1. Poult. Sci. 85, 476–485. https://doi.org/10.1093/ps/85.3.476 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Oh, S., Lillehoj, H. S., Lee, Y., Bravo, D. & Lillehoj, E. P. Dietary antibiotic growth promoters down-regulate intestinal inflammatory cytokine expression in chickens challenged with LPS or co-infected with Eimeria maxima and Clostridium perfringens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2019.00420 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 34.

    Meitern, R., Lind, M. A., Karu, U. & Hõrak, P. Simple and noninvasive method for assessment of digestive efficiency: Validation of fecal steatocrit in greenfinch coccidiosis model. Ecol. Evol. 6, 8756–8763 (2016).

    Article 

    Google Scholar 

  • 35.

    Surai, P., Speake, B. & Sparks, N. Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. J. Poultry Sci. 38, 1–27 (2001).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Madonia, C., Hutton, P., Giraudeau, M. & Sepp, T. Carotenoid coloration is related to fat digestion efficiency in a wild bird. Sci. Nat. 104, 96. https://doi.org/10.1007/s00114-017-1516-y (2017).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Hõrak, P. & Männiste, M. Viability selection affects black but not yellow plumage colour in greenfinches. Oecologia 180, 23–32 (2016).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Saks, L., McGraw, K. & Hõrak, P. How feather colour reflects its carotenoid content. Funct. Ecol. 17, 555–561 (2003).

    Article 

    Google Scholar 

  • 39.

    Sepp, T. et al. Coccidian infection causes oxidative damage in greenfinches. PLoS ONE 7 (2012).

  • 40.

    Männiste, M. & Hõrak, P. Emerging infectious disease selects for darker plumage coloration in greenfinches. Front. Ecol. Evol. 2, 4 (2014).

    Article 

    Google Scholar 

  • 41.

    Hackstein, J. H. et al. Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol. Res. 81, 207–216 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Krautwald-Junghanns, M.-E., Zebisch, R. & Schmidt, V. Relevance and treatment of coccidiosis in domestic pigeons (Columba livia forma domestica) with particular emphasis on toltrazuril. Journal of Avian Medicine and Surgery, 1–5 (2009).

  • 43.

    Löfmark, S., Edlund, C. & Nord, C. E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. 50, S16–S23. https://doi.org/10.1086/647939 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Cramp, S. & Perrins, C. Handbook of the Birds of the Western Palearctic. Volume IV. Terns to Woodpeckers (ed. Cramp, S.), 353–363 (1994).

  • 45.

    Stradi, R., Celentano, G., Rossi, E., Rovati, G. & Pastore, M. Carotenoids in bird plumage—I. The carotenoid pattern in a series of Palearctic Carduelinae. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 110, 131–143 (1995).

    Article 

    Google Scholar 

  • 46.

    Stradi, R. The colour of flight: carotenoids in bird plumages. (Solei Gruppo Editoriale Informatico, 1998).

  • 47.

    McGraw, K., Hill, G., Stradi, R. & Parker, R. The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the American goldfinch. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 131, 261–269 (2002).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Sepp, T., Karu, U., Sild, E., Männiste, M. & Hõrak, P. Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches. Exp. Parasitol. 127, 651–657. https://doi.org/10.1016/j.exppara.2010.12.004 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Hõrak, P. et al. Dexamethasone inhibits corticosterone deposition in feathers of greenfinches. Gen. Comp. Endocrinol. 191, 210–214 (2013).

    Article 

    Google Scholar 

  • 50.

    Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Lin. Soc. 41, 315–352 (1990).

    Article 

    Google Scholar 

  • 51.

    Lessells, C. & Boag, P. T. Unrepeatable repeatabilities: A common mistake. Auk 104, 116–121 (1987).

    Article 

    Google Scholar 

  • 52.

    Hõrak, P., Saks, L., Karu, U. & Ots, I. Host resistance and parasite virulence in greenfinch coccidiosis. J. Evol. Biol. 19, 277–288 (2006).

    Article 

    Google Scholar 

  • 53.

    Jenni-Eiermann, S. & Jenni, L. Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the Garden Warbler. Auk 111, 888–899 (1994).

    Article 

    Google Scholar 

  • 54.

    Saint-Georges-Chaumet, Y. & Edeas, M. Microbiota–mitochondria inter-talk: Consequence for microbiota–host interaction. Pathogens Dis. https://doi.org/10.1093/femspd/ftv096 (2015).

    Article 

    Google Scholar 

  • 55.

    Franco-Obregón, A. & Gilbert, J. A. The microbiome-mitochondrion connection: Common ancestries, common mechanisms, common goals. mSystems https://doi.org/10.1128/mSystems.00018-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Paterson, S. The immunology and ecology of co-infection. Mol. Ecol. 22, 2603–2604 (2013).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Quillfeldt, P. et al. Prevalence and genotyping of Trichomonas infections in wild birds in central Germany. PLoS ONE 13, e0200798–e0200798. https://doi.org/10.1371/journal.pone.0200798 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 58.

    Kinnula, H., Mappes, J. & Sundberg, L.-R. Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions. BMC Evol. Biol. 17, 77. https://doi.org/10.1186/s12862-017-0922-2 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Gill, H. & Paperna, I. Proliferative visceral Isospora (atoxoplasmosis) with morbid impact on the Israeli sparrow Passer domesticus biblicus Hartert, 1904. Parasitol. Res. 103, 493. https://doi.org/10.1007/s00436-008-0986-4 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 60.

    Shojadoost, B., Vince, A. R. & Prescott, J. F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 43, 74. https://doi.org/10.1186/1297-9716-43-74 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Williams, R. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 34, 159–180 (2005).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Freeman, C. D., Klutman, N. E. & Lamp, K. C. Metronidazole. Drugs 54, 679–708. https://doi.org/10.2165/00003495-199754050-00003 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Hill, G. E. Energetic constraints on expression of carotenoid-based plumage coloration. J. Avian Biol. 31, 559–566 (2000).

    Article 

    Google Scholar 

  • 64.

    Hill, G. E. Cellular respiration: The nexus of stress, condition, and ornamentation. Integr. Comp. Biol. 54, 645–657 (2014).

    Article 

    Google Scholar 

  • 65.

    Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut 65, 1906. https://doi.org/10.1136/gutjnl-2016-312297 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Heiss, C. N. & Olofsson, L. E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun. 10, 163–171. https://doi.org/10.1159/000481519 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Lind, M.-A., Hõrak, P., Sepp, T. & Meitern, R. Corticosterone levels correlate in wild-grown and lab-grown feathers in greenfinches (Carduelis chloris) and predict behaviour and survival in captivity. Horm. Behav. 118, 104642 (2020).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Sepp, T., Sild, E. & Horak, P. Hematological condition indexes in greenfinches: Effects of captivity and diurnal variation. Physiol. Biochem. Zool. 83, 276–282 (2010).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Revisiting a quantum past for a fusion future

    From NYC zookeeper to aspiring architect