in

Assessing the potential for deep learning and computer vision to identify bumble bee species from images

[adace-ad id="91168"]
  • 1.

    Alexandra-Maria, K. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).

    Article 

    Google Scholar 

  • 2.

    Winfree, R., Williams, N. M., Gaines, H., Ascher, J. S. & Kremen, C. Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J. Appl. Ecol. 45, 793–802 (2008).

    Article 

    Google Scholar 

  • 3.

    Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl. Acad. Sci. 110, 13044–13048 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 4.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article 

    Google Scholar 

  • 5.

    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. 108, 662–667 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 6.

    Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl. Acad. Sci. 113, 140–145 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 7.

    Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Murray, T. E., Kuhlmann, M. & Potts, S. G. Conservation ecology of bees: populations, species and communities. Apidologie 40, 211–236 (2009).

    Article 

    Google Scholar 

  • 9.

    Michener, C. D. The Bees of the World (Johns Hopkins University Press, Baltimore, 2007).

    Google Scholar 

  • 10.

    Milam, J. et al. Validating morphometrics with DNA barcoding to reliably separate three cryptic species of bombus cresson (Hymenoptera: Apidae). Insects 11, 669 (2020).

    Article 

    Google Scholar 

  • 11.

    Williams, P. H. et al. Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (Hymenoptera, Apidae, Bombus). Eur. J. Taxon. 719, 1–120 (2020).

    Google Scholar 

  • 12.

    Drew, L. W. Are we losing the science of taxonomy? As need grows, numbers and training are failing to keep up. Bioscience 61, 942–946 (2011).

    Article 

    Google Scholar 

  • 13.

    Portman, Z. M., Bruninga-Socolar, B. & Cariveau, D. P. The state of bee monitoring in the United States: A call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am. 113, 337–342 (2020).

    Article 

    Google Scholar 

  • 14.

    Valan, M., Makonyi, K., Maki, A., Vondráček, D. & Ronquist, F. Automated taxonomic identification of insects with expert-level accuracy using effective feature transfer from convolutional networks. Syst. Biol. 68, 876–895 (2019).

    Article 

    Google Scholar 

  • 15.

    Gratton, C. & Zuckerberg, B. Citizen science data for mapping bumble bee populations, in Novel Quantitative Methods in Pollinator Ecology and Management (2019).

  • 16.

    MacPhail, V. J., Gibson, S. D., Hatfield, R. & Colla, S. R. Using Bumble Bee Watch to investigate the accuracy and perception of bumble bee (Bombus spp.) identification by community scientists. PeerJ 8, e9412 (2020).

    Article 

    Google Scholar 

  • 17.

    Weeks, P. J. D., Gauld, I. D., Gaston, K. J. & O’Neill, M. A. Automating the identification of insects: a new solution to an old problem. Bull. Entomol. Res. 87, 203–211 (1997).

    Article 

    Google Scholar 

  • 18.

    Schröder, S. et al. The new key to bees: Automated identification by image analysis of wings. in The Conservation Link Between Agriculture and Nature (eds. Kevan, P. & Imperatriz-Fonseca, V.) 209–216 (Ministry of Environment, 2002).

  • 19.

    MacLeod, N., Benfield, M. & Culverhouse, P. Time to automate identification. Nature 467, 154–155 (2010).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 20.

    Fuentes, A., Yoon, S., Kim, S. C. & Park, D. S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17, 2022 (2017).

    Article 

    Google Scholar 

  • 21.

    Motta, D. et al. Application of convolutional neural networks for classification of adult mosquitoes in the field. PLoS ONE 14, e0210829 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Bojarski, M. et al. End to end learning for self-driving cars. arXxiv:1604.07316 (2016).

  • 23.

    Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A. & Mougiakakou, S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35, 1207–1216 (2016).

    Article 

    Google Scholar 

  • 24.

    Liu, Z., Gao, J., Yang, G., Zhang, H. & He, Y. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Sci. Rep. 6, 20410 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 25.

    Martineau, M., Raveaux, R., Chatelain, C., Conte, D. & Venturini, G. Effective training of convolutional neural networks for insect image recognition. In Advanced Concepts for Intelligent Vision Systems, pp 426–437 (eds Blanc-Talon, J. et al.) (Springer International Publishing, Cham, 2018).

    Google Scholar 

  • 26.

    Marques, A. C. R. et al. Ant genera identification using an ensemble of convolutional neural networks. PLoS ONE 13, e0192011 (2018).

    Article 

    Google Scholar 

  • 27.

    Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. Bumble Bees of North America: An Identification Guide (Princeton University Press, Princeton, 2014).

    Google Scholar 

  • 28.

    He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. 2016 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR 770–778 (2015).

  • 29.

    Zagoruyko, S. & Komodakis, N. Wide residual networks. arXxiv:1605.07146 (2017).

  • 30.

    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. arXxiv:1512.00567 (2015).

  • 31.

    Tan, M. et al. MnasNet: Platform-aware neural architecture search for mobile. arXxiv:1807.11626 (2019).

  • 32.

    Deng, J. et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (2009).

  • 33.

    Hernández-García, A. & König, P. Further advantages of data augmentation on convolutional neural networks. arXxiv:1906.11052 11139, 95–103 (2018).

  • 34.

    Fard, F. S., Hollensen, P., Mcilory, S. & Trappenberg, T. Impact of biased mislabeling on learning with deep networks. in 2017 International Joint Conference on Neural Networks (IJCNN) 2652–2657 (2017).

  • 35.

    Clare, J. D. J., Townsend, P. A. & Zuckerberg, B. Generalized model-based solutions to false positive error in species detection/non-detection data. Ecology 102, e03241 (2021).

    Article 

    Google Scholar 

  • 36.

    Clare, J. D. J. et al. Making inference with messy (citizen science) data: when are data accurate enough and how can they be improved?. Ecol. Appl. 29, e01849 (2019).

    Article 

    Google Scholar 

  • 37.

    Tian, Z. et al. Discriminative CNN via metric learning for hyperspectral classification. in IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium 580–583 (2019).

  • 38.

    Nazki, H., Yoon, S., Fuentes, A. & Park, D. S. Unsupervised image translation using adversarial networks for improved plant disease recognition. Comput. Electron. Agric. 168, 105117 (2020).

    Article 

    Google Scholar 

  • 39.

    Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evol. 9, 2216–2225 (2018).

    Article 

    Google Scholar 

  • 40.

    Woodard, S. H. et al. Towards a U.S. national program for monitoring native bees. Biol. Conserv. 252, 108821 (2020).

    Article 

    Google Scholar 

  • 41.

    Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).

    Article 

    Google Scholar 

  • 43.

    Høye, T. T., Mann, H. M. R. & Bjerge, K. Camera-based monitoring of insects on green roofs. DCE – Natl. Cent. Environ. Energy 18 (2020).

  • 44.

    Ärje, J. et al. Automatic image-based identification and biomass estimation of invertebrates. Methods Ecol. Evol. 11, 922–931 (2020).

    Article 

    Google Scholar 

  • 45.

    Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115, E5716–E5725 (2018).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article 

    Google Scholar 

  • 47.

    Ghisbain, G. et al. Substantial genetic divergence and lack of recent gene flow support cryptic speciation in a colour polymorphic bumble bee (Bombus bifarius) species complex. Syst. Ecol. 45, 635–652 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Detection of untreated sewage discharges to watercourses using machine learning

    Genetic diversity and population structure of razor clam Sinonovacula constricta in Ariake Bay, Japan, revealed using RAD-Seq SNP markers