in

Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks

[adace-ad id="91168"]
  • 1.

    Andrady AL. The plastic in microplastics: a review. Mar Pollut Bull. 2017;119:12–22.

    CAS 
    Article 

    Google Scholar 

  • 2.

    Akdogan Z, Guven B. Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ Pollut. 2019;254:113011.

    CAS 
    Article 

    Google Scholar 

  • 3.

    Dilkes-Hoffman LS, Pratt S, Lant PA, Laycock B. The role of biodegradable plastic in solving plastic solid waste accumulation. In: Al-Salem SM, editor. Plastics to energy. New York: William Andrew Publishing; 2019. p. 469–505.

  • 4.

    Reichert CL, Bugnicourt E, Coltelli MB, Cinelli P, Lazzeri A, Canesi I, et al. Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers. 2020;12:1558

    CAS 
    Article 

    Google Scholar 

  • 5.

    Reglero Ruiz JA, Trigo-López M, García FC, García JM. Functional aromatic polyamides. Polymers. 2017;9:414.

    Article 

    Google Scholar 

  • 6.

    Pilato L. Phenolic resins: a century of progress. New York: Springer; 2010.

  • 7.

    Ko HU, Zhai L, Park JH, Lee JY, Kim D, Kim J. Poly(vinyl alcohol)–lignin blended resin for cellulose-based composites. J Appl Polym Sci. 2018;135:46655.

    Article 

    Google Scholar 

  • 8.

    Shikinaka K, Nakamura M, Otsuka Y. Strong UV absorption by nanoparticulated lignin in polymer films with reinforcement of mechanical properties. Polymer. 2020;190:122254.

    CAS 
    Article 

    Google Scholar 

  • 9.

    Kargarzadeh H, Galeski A, Pawlak A. PBAT green composites: effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties. Polymer. 2020;203:122748.

    CAS 
    Article 

    Google Scholar 

  • 10.

    Matsuoka T, Nonaka H. Wet extrusion of wood powder using a cellulose derivative. Jpn TAPPI J. 2020;74:516–24.

    Article 

    Google Scholar 

  • 11.

    Shen X, Berton P, Shamshina JL, Rogers RD. Preparation and comparison of bulk and membrane hydrogels based on Kraft-and ionic-liquid-isolated lignins. Green Chem. 2016;18:5607–20.

    CAS 
    Article 

    Google Scholar 

  • 12.

    Li H, Sun JT, Wang C, Liu S, Yuan D, Zhou X, et al. High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustain Chem Eng. 2017;5:7942–9.

    CAS 
    Article 

    Google Scholar 

  • 13.

    Dehne L, Vila C, Saake B, Schwarz KU. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends. J Appl Polym Sci. 2017;134:44582.

    Article 

    Google Scholar 

  • 14.

    Dick TA, Couve J, Gimello O, Mas A, Robin JJ. Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly (L-lactide) composites. Polymer. 2017;118:280–96.

    Article 

    Google Scholar 

  • 15.

    Ushimaru K, Morita T, Fukuoka T. Moldable and humidity-responsive self-healable complex from lignosulfonate and cationic polyelectrolyte. ACS Sustain Chem Eng. 2018;6:14831–7.

    CAS 
    Article 

    Google Scholar 

  • 16.

    Ushimaru K, Hamano Y, Morita T, Fukuoka T. Moldable material from ε-poly-l-lysine and lignosulfonate: mechanical and self-healing properties of a bio-based polyelectrolyte complex. ACS Omega. 2019;4:9756–62.

    CAS 
    Article 

    Google Scholar 

  • 17.

    Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53:10316–29.

    CAS 
    Article 

    Google Scholar 

  • 18.

    Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33:499–512.

    CAS 
    Article 

    Google Scholar 

  • 19.

    Ushimaru K, Morita T, Fukuoka T. Bio-based, flexible, and tough material derived from ε-poly-l-lysine and fructose via the Maillard reaction. ACS Omega. 2020;5:22793–9.

    CAS 
    Article 

    Google Scholar 

  • 20.

    Ushimaru K, Morita T, Fukuoka T. A bio-based adhesive composed of polyelectrolyte complexes of lignosulfonate and cationic polyelectrolytes. J Wood Chem Technol. 2020;40:172–7.

    CAS 
    Article 

    Google Scholar 

  • 21.

    Zhang ZH, Zeng XA, Brennan CS, Ma H, Aadil RM. Preparation and characterisation of novelty food preservatives by Maillard reaction between ε-polylysine and reducing sugars. Int J Food Sci Technol. 2019;54:1824–35.

    CAS 
    Article 

    Google Scholar 

  • 22.

    Lay M, Thajudin NLN, Hamid ZAA, Rusli A, Abdullah MK, Shuib RK. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos B Eng. 2019;176:107341.

    CAS 
    Article 

    Google Scholar 

  • 23.

    Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213:222–4.

    CAS 
    Article 

    Google Scholar 

  • 24.

    Suarez G, Rajaram RAMA, Oronsky AL, Gawinowicz MA. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem. 1989;264:3674–9.

    CAS 
    Article 

    Google Scholar 

  • 25.

    Kim C, Yoshie N. Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers? Polym J. 2018;50:919–29.

    CAS 
    Article 

    Google Scholar 

  • 26.

    Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.

    CAS 
    Article 

    Google Scholar 

  • 27.

    Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–90.

    CAS 
    Article 

    Google Scholar 

  • 28.

    Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C. Toughening elastomers with sacrificial bonds and watching them break. Science. 2014;344:186–9.

    CAS 
    Article 

    Google Scholar 

  • 29.

    Neal JA, Mozhdehi D, Guan Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J Am Chem Soc. 2015;137:4846–50.

    CAS 
    Article 

    Google Scholar 

  • 30.

    Nakajima T. Generalization of the sacrificial bond principle for gel and elastomer toughening. Polym J. 2017;49:477–85.

    CAS 
    Article 

    Google Scholar 

  • 31.

    Yamini G, Shakeri A, Zohuriaan-Mehr MJ, Kabiri K. Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: from natural waste to value-added bio-additive. J CO2 Util. 2018;24:50–8.

  • 32.

    Szabó G, Romhányi V, Kun D, Renner K, Pukánszky B. Competitive interactions in aromatic polymer/lignosulfonate blends. ACS Sustain Chem Eng. 2017;5:410–9.

    Article 

    Google Scholar 

  • 33.

    Lee SI, Chun BC. Effect of EGMA content on the tensile and impact properties of poly (phenylene sulfide)/EGMA blends. Polymer. 1998;39:6441–7.

    CAS 
    Article 

    Google Scholar 

  • 34.

    Yang Y, Duan H, Zhang S, Niu P, Zhang G, Long S, et al. Morphology control of nanofillers in poly (phenylene sulfide): a novel method to realize the exfoliation of nanoclay by SiO2 via melt shear flow. Compos Sci Technol. 2013;75:28–34.

    CAS 
    Article 

    Google Scholar 

  • 35.

    Tao X, Nonaka H. Wet extrusion molding of wood powder with hydroxy-propylmethyl cellulose and with citric acid as a crosslinking agent. BioResources. 2021;16:2314–25.

    CAS 

    Google Scholar 

  • 36.

    Hasegawa D, Teramoto Y, Nishio Y. Molecular complex of lignosulfonic acid/poly (vinyl pyridine) via ionic interaction: characterization of chemical composition and application to material surface modifications. J Wood Sci. 2008;54:143–52.

    CAS 
    Article 

    Google Scholar 

  • 37.

    Wei C, Zhu X, Peng H, Chen J, Zhang F, Zhao Q. Facile preparation of lignin-based underwater adhesives with improved performances. ACS Sustain Chem Eng. 2019;7:4508–14.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    3Q: The socio-environmental complexities of renewable energy

    Phonon catalysis could lead to a new field