in

Biodiversity–productivity relationships are key to nature-based climate solutions

[adace-ad id="91168"]
  • 1.

    UNEP. Global Environment Outlook – GEO6: Healthy Planet, Healthy People (Cambridge Univ. Press, 2019); https://www.unep.org/resources/global-environment-outlook-6

  • 2.

    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Mori, A. S., Spies, T. A., Sudmeier-Rieux, K. & Andrade, A. Reframing ecosystem management in the era of climate change: issues and knowledge from forests. Biol. Conserv. 165, 115–127 (2013).

    Article 

    Google Scholar 

  • 4.

    Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5° C rather than 2° C. Science 360, 791–795 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    CAS 
    Article 

    Google Scholar 

  • 7.

    IPBES secretariat. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds. Diaz, S. et al.) (IPBES, 2019); https://ipbes.net/global-assessment

  • 8.

    Midgley, G. F. et al. Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Curr. Opin. Environ. Sustain. 2, 264–270 (2010).

    Article 

    Google Scholar 

  • 9.

    Jones, A. D., Calvin, K. V., Collins, W. D. & Edmonds, J. Accounting for radiative forcing from albedo change in future global land-use scenarios. Clim. Change 131, 691–703 (2015).

    Article 

    Google Scholar 

  • 10.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Article 

    Google Scholar 

  • 12.

    Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Mori, A. S. Advancing nature-based approaches to address the biodiversity and climate emergency. Ecol. Lett. 23, 1729–1732 (2020).

  • 14.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).

    Article 

    Google Scholar 

  • 17.

    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).

    Article 

    Google Scholar 

  • 19.

    Hulvey, K. B. et al. Benefits of tree mixes in carbon plantings. Nat. Clim. Change 3, 869–874 (2013).

    CAS 
    Article 

    Google Scholar 

  • 20.

    World Economic Forum. The Global Risks Report 2020 https://www.weforum.org/reports/the-global-risks-report-2020 (2020).

  • 21.

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Ann. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article 

    Google Scholar 

  • 22.

    Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).

    Article 

    Google Scholar 

  • 23.

    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    Article 

    Google Scholar 

  • 24.

    Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2016).

    Article 

    Google Scholar 

  • 25.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Running, S., Mu, Q., Zhao, M. & MODAPS-SIPS. MOD17A3 MODIS/Terra Gross Primary Productivity Yearly L4 Global 1km SIN Grid (NASA, 2015); https://doi.org/10.5067/MODIS/MOD17A3.006

  • 27.

    Fujimori, S., Hasegawa, T., Ito, A., Takahashi, K. & Masui, T. Gridded emissions and land-use data for 2005-2100 under diverse socioeconomic and climate mitigation scenarios. Sci. Data 5, 180210 (2018).

    Article 

    Google Scholar 

  • 28.

    Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article 

    Google Scholar 

  • 30.

    Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).

    Article 

    Google Scholar 

  • 32.

    Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).

    Article 

    Google Scholar 

  • 33.

    Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–900 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    Article 

    Google Scholar 

  • 36.

    Mori, A. S., Lertzman, K. P. & Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J. Appl. Ecol. 54, 12–27 (2017).

    Article 

    Google Scholar 

  • 37.

    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Quine, C. P., Bailey, S. A., Watts, K. & Hulme, P. Sustainable forest management in a time of ecosystem services frameworks: common ground and consequences. J. Appl. Ecol. 50, 863–867 (2013).

    Article 

    Google Scholar 

  • 39.

    Climate Change for Forest Policy-Makers: An Approach for Integrating Climate Change into National Forest Policy in Support of Sustainable Forest Management Version 2.0. FAO Forestry Paper No. 181 (FAO, 2018); http://www.fao.org/3/CA2309EN/ca2309en.pdf

  • 40.

    The Future We Want: Biodiversity and Ecosystems—Driving Sustainable Development. United Nations Development Programme Biodiversity and Ecosystems Global Framework 2012-2020 (UNDP, 2012); https://www.cbd.int/financial/mainstream/undp-globalframework2012-2020.pdf

  • 41.

    Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems. Technical Series No. 43 (Convention on Biological Diversity, 2009); https://www.cbd.int/doc/publications/cbd-ts-43-en.pdf

  • 42.

    CBD secretariat. Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second ad hoc Technical Expert Group on Biodiversity and Climate Change. Technical Series No. 41 (Convention on Biological Diversity, 2009); https://www.cbd.int/doc/publications/cbd-ts-41-en.pdf

  • 43.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).

    Article 

    Google Scholar 

  • 45.

    Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol. Model. 385, 124–132 (2018).

    Article 

    Google Scholar 

  • 46.

    Jordano, P. & Rees, M. What is long-distance dispersal? And a taxonomy of dispersal events. J. Ecol. 105, 75–84 (2017).

    Article 

    Google Scholar 

  • 47.

    Veldman, J. W. et al. Comment on ‘The global tree restoration potential’. Science 366, eaay7976 (2019).

    Article 

    Google Scholar 

  • 48.

    Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351, 597–600 (2016).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Bellamy, R. & Osaka, S. Unnatural climate solutions? Nat. Clim. Change 10, 98–99 (2020).

    Article 

    Google Scholar 

  • 53.

    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).

    Article 

    Google Scholar 

  • 54.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 55.

    Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).

    Article 

    Google Scholar 

  • 56.

    Collins, W. J. et al. Development and evaluation of an Earth-System model – HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).

    Article 

    Google Scholar 

  • 57.

    Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).

    Article 

    Google Scholar 

  • 58.

    Griffies, S. M. et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J. Clim. 24, 3520–3544 (2011).

    Article 

    Google Scholar 

  • 59.

    Fujimori, S., Hasegawa, T. & Masui, T. In Post-2020 Climate Action (eds Fujimori, S., Kainuma, M. & Masui, T.) 305–328 (Springer, 2017).

  • 60.

    Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar 

  • 62.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar 

  • 63.

    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

    Article 

    Google Scholar 

  • 64.

    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).

    Article 

    Google Scholar 

  • 65.

    Pearson, R. G., Dawson, T. P. & Liu, C. Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27, 285–298 (2004).

    Article 

    Google Scholar 

  • 66.

    Tamme, R. et al. Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95, 505–513 (2014).

    Article 

    Google Scholar 

  • 67.

    Engen, S., Lande, R., Walla, T. & DeVries, P. J. Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. Am. Nat. 160, 60–73 (2002).

    Article 

    Google Scholar 

  • 68.

    He, F. & Gaston, K. J. Occupancy, spatial variance, and the abundance of species. Am. Nat. 162, 366–375 (2003).

    Article 

    Google Scholar 

  • 69.

    Magurran, A. E. & McGill, B. J. Biological Diversity (Oxford Univ. Press, 2011).

  • 70.

    Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 (KDD, 2016); https://doi.org/10.1145/2939672.2939785

  • 71.

    He, F. & Hubbell, S. P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Neigel, J. E. Species–area relationships and marine conservation. Ecol. Appl 13, 138–145 (2003).

    Article 

    Google Scholar 

  • 73.

    Rogan, J. E. & Lacher, T. E. Impacts of Habitat Loss and Fragmentation on Terrestrial Biodiversity. in Earth Systems and Environmental Sciences. https://doi.org/10.1016/b978-0-12-409548-9.10913-3 (Elsevier, 2018).

  • 74.

    Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Botanic Gardens Conservation International. Global Tree Search Database. Version 1.3 (Botanic Gardens Conservation International, 2019); https://tools.bgci.org/global_tree_search.php


  • Source: Ecology - nature.com

    Accelerating AI at the speed of light

    Exploring the future of humanitarian technology