in

Biogeochemical feedbacks to ocean acidification in a cohesive photosynthetic sediment

[adace-ad id="91168"]
  • 1.

    Revelle, R. & Suess, H. E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9, 18–27 (1957).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Frankignoulle, M. A complete set of buffer factors for acid/base CO2 system in seawater. J. Mar. Syst. 5, 111–118 (1994).

    Google Scholar 

  • 3.

    Egleston, E. S., Sabine, C. L. & Morel, F. M. M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 24, GB1002 (2010).

    ADS 

    Google Scholar 

  • 4.

    Bates, N. et al. A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27(1), 126–141 (2014).

    MathSciNet 

    Google Scholar 

  • 5.

    Lauvset, S., Gruber, N., Landschützer, P., Olsen, A. & Tjiputra, J. Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences 12(5), 1285–1298 (2015).

    ADS 

    Google Scholar 

  • 6.

    Ríos, A. F. et al. Decadal acidification in the Atlantic. Proc. Natl. Acad. Sci. 112(32), 9950–9955 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Schulz, K. G. & Riebesell, U. Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon dioxide. Mar. Biol. 160, 1889–1899 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Provoost, P., van Heuven, S., Soetaert, K., Laane, R. W. P. M. & Middelburg, J. J. Seasonal and long-term changes in pH in the Dutch coastal zone. Biogeosciences 7, 3869–3878 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Hofmann, G. E. et al. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Borges, A. V. & Gypens, N. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol. Oceanogr. 55, 346–353 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 11.

    Cai, W.-J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Sunda, W. G. & Cai, W.-J. Eutrophication induced CO2-acidification of subsurface coastal waters: Interactive effects of temperature, salinity, and atmospheric pCO2. Environ. Sci. Technol. 46, 10651–10659 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Jury, C. P., Thomas, F. I. M., Atkinson, M. J. & Toonen, R. J. Buffer capacity, ecosystem feedbacks, and seawater chemistry under global change. Water 5, 1303–1325 (2013).

    CAS 

    Google Scholar 

  • 14.

    Hagens, M. et al. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin. Biogeosciences 12, 1561–1583 (2015).

    ADS 

    Google Scholar 

  • 15.

    Santschi, P., Höhener, P., Benoit, G. & Buchholtz-ten, B. M. Chemical processes at the sediment–water interface. Mar. Chem. 30, 269–315 (1990).

    CAS 

    Google Scholar 

  • 16.

    Pawlik, J. R. Chemical ecology of the settlement of benthic marine invertebrates. Oceangr. Mar. Biol. Annu. Rev. 30, 273–335 (1992).

    Google Scholar 

  • 17.

    Marinelli, R. L. & Woodin, S. A. Experimental evidence for linkages between infaunal recruitment, disturbance, and sediment surface chemistry. Limnol. Oceanogr. 47(1), 221–229 (2002).

    ADS 
    CAS 

    Google Scholar 

  • 18.

    Clements, J. C. & Hunt, H. L. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser. 536, 259–279 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Vopel, K., Laverock, B., Cary, C. & Pilditch, C. A. Effects of warming and CO2 enrichment on O2 consumption, porewater oxygenation and pH of subtidal silt sediment. Aquat. Sci. 83, 8 (2021).

    CAS 

    Google Scholar 

  • 20.

    Green, M. A., Jones, M. E., Boudreau, C. L., Moore, R. L. & Westman, B. A. Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnol. Oceanogr. 49(3), 727–734 (2004).

    ADS 

    Google Scholar 

  • 21.

    Green, M. A., Waldbusser, G., Reilly, S., Emerson, K. & O’Donnell, S. Death by dissolution: Sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr. 54(4), 1037–1047 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 22.

    Green, M. A., Waldbusser, G. G., Hubazc, L., Cathcart, E. & Hall, J. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuaries Coasts 36, 18–27 (2013).

    CAS 

    Google Scholar 

  • 23.

    Clements, J. C., Woodard, K. D. & Hunt, H. L. Porewater acidification alters the burrowing behavior and post-settlement dispersal of juvenile soft-shell clams (Mya arenaria). J. Exp. Mar. Biol. Ecol. 477, 103–111 (2016).

    Google Scholar 

  • 24.

    Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA = 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Acta 192, 318–337 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Nimer, N. A., Brownlee, C. & Merrett, M. J. Extracellular carbonic anhydrase facilitates carbon dioxide availability for photosynthesis in the marine dinoflagellate Prorocentrum micans. Plant Physiol. 120, 105–112 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Hopkinson, B. M., Meile, C. & Shen, C. Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role. Plant Physiol. 162, 1142–1152 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Tachibana, M. et al. Localization of putative carbonic anhydrase in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth. Res. 109, 205–221 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Samukawa, M., Shen, C., Hopkinson, B. M. & Matsuda, Y. Localization of putative carbonic anhydrases in the marine diatom, Thalassiosira pseudonana. Photosynth. Res. 121, 235–249 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Matsuda, Y., Hopkinson, B. M., Nakajima, K., Dupont, C. L. & Tsuji, Y. Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: A gateway to carbon metabolism. Philos. Trans. R. Soc. B 372, 20160403 (2017).

    Google Scholar 

  • 30.

    Milligan, A. J. & Morel, F. M. M. A proton buffering role for silica in diatoms. Science 297, 1848–1850 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Subhas, A. V. et al. Catalysis and chemical mechanisms of calcite dissolution in seawater. Proc. Natl. Acad. Sci. 114, 8175–8180 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Middelburg, J. J., Soetaert, K. & Hagens, M. Ocean alkalinity, buffering and biogeochemical processes. Rev. Geophys. 58, e2019RG000681 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R. & Greenwood, J. The effect of biogeochemical processes on pH. Mar. Chem. 105, 30–51 (2007).

    CAS 

    Google Scholar 

  • 34.

    Zhu, Q., Aller, R. C. & Fan, Y. Two-dimensional pH distributions and dynamics in bioturbated marine sediments. Geochim. Cosmochim. Acta 70, 4933–4949 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 35.

    Vopel, K., Del-Río, C. & Pilditch, C. A. Effects of CO2 enrichment on benthic primary production and inorganic nitrogen fluxes in two coastal sediments. Sci. Rep. 8, 1035 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167, 191–194 (1975).

    CAS 

    Google Scholar 

  • 37.

    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to best practices for ocean CO2 measurements: PICES Special Publication 3. http://cdiac.ornl.gov/oceans/Handbook_2007.html (2007).

  • 38.

    Lewis, E. & Wallace, D. W. R. Program Developed for CO2 System Calculations. ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1998).

    Google Scholar 

  • 39.

    Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCL(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

    CAS 

    Google Scholar 

  • 40.

    Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. N. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissolution of carbonic acid in seawater media. Deep Sea Res. 34(10), 1733–1743 (1987).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Berg, P. N., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 43.

    Revsbech, N. P., Nielsen, L. P. & Ramsing, N. B. A novel microsensor for determination of apparent diffusivity in sediments. Limnol. Oceanogr. 43, 986–992 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Vopel, K., Pilditch, C. A., Wilson, P. & Ellwood, M. J. Oxidation of surface sediment: Effects of disturbance depth and seawater flow speed. Mar. Ecol. Prog. Ser. 392, 43–55 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 45.

    Broecker, W. S. & Peng, T.-H. Gas exchange rates between air and sea. Tellus 26(1–2), 21–35 (1974).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, 2009).

    Google Scholar 

  • 47.

    Li, Y.-H. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38(5), 703–714 (1974).

    ADS 
    CAS 

    Google Scholar 

  • 48.

    Ullman, W. J. & Aller, R. C. Diffusion coefficients in nearshore marine sediments. Limnol. Oceanogr. 27(3), 552–556 (1982).

    ADS 
    CAS 

    Google Scholar 

  • 49.

    Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30(1), 111–122 (1985).

    ADS 

    Google Scholar 

  • 50.

    Rasmussen, H. & Jørgensen, B. B. Microelectrode studies of seasonal oxygen uptake in a coastal sediment: Role of molecular diffusion. Mar. Ecol. Prog. Ser. 81, 289–303 (1992).

    ADS 
    CAS 

    Google Scholar 

  • 51.

    Nordstrom, D. K., Jenne, E. A. & Ball, J. W. Redox equilibria of iron in acid mine waters. In Chemical Modeling in Aqueous Systems. American Chemical Society Symposium Series Vol. 93 (ed. Jenne, E. A.) 57–79 (American Chemical Society, 1979).

    Google Scholar 

  • 52.

    Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: Reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).

    Google Scholar 


  • Source: Ecology - nature.com

    Contact calls in woodpeckers are individually distinctive, show significant sex differences and enable mate recognition

    Translation stalling proline motifs are enriched in slow-growing, thermophilic, and multicellular bacteria