in

Brain size and neuron numbers drive differences in yawn duration across mammals and birds

[adace-ad id="91168"]
  • 1.

    Barbizet, J. Yawning. J. Neurol. Neurosurg. Psychiatry 21, 203–209 (1958).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Baenninger, R. Some comparative aspects of yawning in Betta splendens, Homo sapiens, Panthera leo, and Papio sphinx. J. Comp. Psychol. 101, 349 (1987).

    Article 

    Google Scholar 

  • 3.

    de Vries, J. I. P., Visser, G. H. A. & Prechtl, H. F. R. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum. Dev. 7, 301–322 (1982).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Provine, R. R. Yawning as a stereotyped action pattern and releasing stimulus. Ethology 72, 109–122 (1986).

    Article 

    Google Scholar 

  • 5.

    Tesfaye, Y. & Lal, S. Hazard of yawning. Can. Med. Assoc. J. 142, 15 (1990).

    CAS 

    Google Scholar 

  • 6.

    Smith, E. O. Yawning: an evolutionary perspective. Hum. Evol. 14, 191–198 (1999).

    Article 

    Google Scholar 

  • 7.

    Guggisberg, A. G., Mathis, J., Schnider, A. & Hess, C. W. Why do we yawn? Neurosci. Biobehav. Rev. 34, 1267–1276 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Gallup, A. C. Why do we yawn? Primitive versus derived features. Neurosci. Biobehav. Rev. 35, 765–769 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Provine, R. R., Tate, B. C. & Geldmacher, L. L. Yawning: no effect of 3–5% CO2, 100% O2, and exercise. Behav. Neural Biol. 48, 382–393 (1987).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Gallup, A. C. & Gallup, G. G. Jr. Yawning as a brain cooling mechanism: nasal breathing and forehead cooling diminish the incidence of contagious yawning. Evol. Psychol. 5, 92–101 (2007).

    Article 

    Google Scholar 

  • 11.

    Gallup, A. C. & Gallup, G. G. Jr. Yawning and thermoregulation. Physiol. Behav. 95, 10–16 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Gallup, A. C. & Eldakar, O. T. The thermoregulatory theory of yawning: what we know from over 5 years of research. Front. Neurosci. 6, 188 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Shoup-Knox, M. L., Gallup, A. C., Gallup, G. & McNay, E. C. Yawning and stretching predict brain temperature changes in rats: support for the thermoregulatory hypothesis. Front. Evol. Neurosci. 2, 108 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Gallup, G. G. & Gallup, A. C. Excessive yawning and thermoregulation: two case histories of chronic, debilitating bouts of yawning. Sleep Breath. 14, 157–159 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Eguibar, J. R., Uribe, C. A., Cortes, C., Bautista, A. & Gallup, A. C. Yawning reduces facial temperature in the high-yawning subline of Sprague-Dawley rats. BMC Neurosci. 18, 3 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Ramirez, V., Ryan, C. P., Eldakar, O. T. & Gallup, A. C. Manipulating neck temperature alters contagious yawning in humans. Physiol. Behav. 207, 86–89 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Gallup, A. C., Miller, R. R. & Clark, A. B. Changes in ambient temperature trigger yawning but not stretching in rats. Ethology 117, 145–153 (2011).

    Article 

    Google Scholar 

  • 18.

    Gallup, A. C. & Eldakar, O. T. Contagious yawning and seasonal climate variation. Front. Evolut. Neurosci. 3, 3 (2011).

    Google Scholar 

  • 19.

    Massen, J. J. M., Dusch, K., Eldakar, O. T. & Gallup, A. C. A thermal window for yawning in humans: yawning as a brain cooling mechanism. Physiol. Behav. 130, 145–148 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Eldakar, O. T. et al. Temperature-dependent variation in self-reported contagious yawning. Adapt. Hum. Behav. Physiol. 1, 460–466 (2015).

    Article 

    Google Scholar 

  • 21.

    Falk, D. Brain evolution in Homo: The “radiator” theory. Behav. Brain Sci. 13, 333–381 (1990).

    Article 

    Google Scholar 

  • 22.

    Kiyatkin, E. A., Brown, P. L. & Wise, R. A. Brain temperature fluctuation: a reflection of functional neural activation. Eur. J. Neurosci. 16, 164–168 (2002).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Baker, M. A. Brain cooling in endotherms in heat and exercise. Annu. Rev. Physiol. 44, 85–85 (1982).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Wang, H. et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front. Neurosci. 8, 307 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Richie, J. M. Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog. Biophys. Mol. Biol. 26, 147–187 (1973).

    Article 

    Google Scholar 

  • 26.

    Gallup, A. C., Church, A. M. & Pelegrino, A. J. Yawn duration predicts brain weight and cortical neuron number in mammals. Biol. Lett. 12, 20160545 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Gallup, A. C., Crowe, B. & Yanchus, M. Yawn duration predicts brain volumes in wild cats (Felidae). Int. J. Comp. Psychol. 30, 1–5 (2017).

    Article 

    Google Scholar 

  • 28.

    Gallup, A. C., Moscatello, L. & Massen, J. J. M. Brain weight predicts yawn duration across domesticated dog breeds. Curr. Zool. 66, 401–405 (2020).

  • 29.

    Kilgore, D. L., Bernstein, M. H. & Hudson, D. M. Brain temperatures in birds. J. Comp. Physiol. 110, 209–215 (1976).

    Article 

    Google Scholar 

  • 30.

    McKechnie, A. E. & Wolf, B. O. The physiology of heat tolerance in small endotherms. Physiology 34, 302–313 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Bernstein, M. H., Sandoval, I., Curtis, M. B. & Hudson, D. M. Brain temperature in pigeons: effects of anterior respiratory bypass. J. Comp. Physiol. 129, 115–118 (1979).

    Article 

    Google Scholar 

  • 32.

    Porter, W. R. & Witmer, L. M. Avian cephalic vascular anatomy, sites of thermal exchange, and the rete ophthalmicum. Anat. Rec. 299, 1461–1486 (2016).

    Article 

    Google Scholar 

  • 33.

    Gallup, A. C., Miller, M. L. & Clark, A. B. Yawning and thermoregulation in budgerigars, Melopsittacus undulatus. Anim. Behav. 77, 109–113 (2009).

    Article 

    Google Scholar 

  • 34.

    Gallup, A. C., Miller, M. L. & Clark, A. B. The direction and range of ambient temperature change influences yawning in budgerigars (Melopsittacus undulatus). J. Comp. Psychol. 124, 133 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Gallup, A. C. et al. Thermal imaging reveals sizable shifts in facial temperature surrounding yawning in budgerigars (Melopsittacus undulatus). Temperature 4, 429–435 (2017).

    Article 

    Google Scholar 

  • 36.

    Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Revell, L. J. Size‐correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Prinzinger, R., Preßmar, A. & Schleucher, E. Body temperature in birds. Comp. Biochem. Phys. A 99, 499–506 (1991).

    Article 

    Google Scholar 

  • 39.

    Jessen, C. Temperature Regulation in Humans and Other Mammals (Springer, 2001).

  • 40.

    O’Brien, H. D. From anomalous arteries to selective brain cooling: parallel evolution of the artiodactyl carotid rete. Anat. Rec. 303, 308–317 (2020).

    Article 

    Google Scholar 

  • 41.

    Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325, 468–470 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Iwaniuk, A. N., Dean, K. M. & Nelson, J. E. Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates. Brain Behav. Evol. 65, 40–59 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    von Eugen, K., Ströckens, F., Backes, H., Endepols, H., & Güntürkün, O. Glucose Metabolism of the Avian Brain: an FDG-PET Study in Pigeons (Columba livia) with Estimated Arterial Input Function of Anesthetized and Awake State. Poster # 068.12/QQ22 Neuroscience Meeting Planner (Online) (Society for Neuroscience, 2018).

  • 45.

    Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS ONE 6, e17514 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Kverková, K. et al. Sociality does not drive the evolution of large brains in eusocial African mole-rats. Sci. Rep. 8, 9203 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Buffenstein, R. & Yahav, S. Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal? J. Therm. Biol. 16, 227–232 (1991).

    Article 

    Google Scholar 

  • 48.

    Tucker, R. The digging behavior and skin differentiations in Heterocephalus glaber. J. Morphol. 168, 51–71 (1981).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    McNab, B. K. The metabolism of fossorial rodents: a study of convergence. Ecology 47, 712–733 (1966).

    Article 

    Google Scholar 

  • 50.

    Stephan, H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. wiss. Zool. 164, 143–172 (1960).

    Google Scholar 

  • 51.

    Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA 103, 12138–12143 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Herculano-Houzel, S., Collins, C. E., Wong, P. & Kaas, J. K. Cellular scaling rules for primate brains. Proc. Natl Acad. Sci. USA 104, 3562–3567 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Herculano-Houzel, S. et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav. Evol. 78, 302–314 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Herculano-Houzel, S., Catania, K., Manger, P. R. & Kaas, J. H. Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav. Evol. 86, 145–163 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Dos Santos, S. E. et al. Cellular scaling rules for the brains of marsupials: not as “primitive” as expected. Brain Behav. Evol. 89, 48–63 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Kazu, R. S., Maldonado, J., Mota, B., Manger, P. R. & Herculano-Houzel, S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front. Neuroanat. 8, 128 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Collins, C. E. et al. Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc. Natl Acad. Sci. USA 113, 740–745 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Jardim-Messeder, D. et al. Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front. Neuroanat. 11, 118 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear-protein in vertebrates. Development 116, 201–211 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Mezey, S. et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100–116 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Rehkämper, G., Kart, E., Frahm, H. D. & Werner, C. W. Discontinuous variability of brain composition among domestic chicken breeds. Brain Behav. Evol. 61, 59–69 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Horschler, D. J. et al. Absolute brain size predicts dog breed differences in executive function. Anim. Cogn. 22, 187–198 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Rogell, B., Dowling, D. K. & Husby, A. Controlling for body size leads to inferential biases in the biological sciences. Evol. Lett. 4, 73–82 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Gutierrez-Ibanez, C., Iwaniuk, A. N. & Wylie, D. R. Relative brain size is not correlated with display complexity in manakins: a reanalysis of Lindsay et al. (2015). Brain Behav. Evol. 87, 223–226 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • 66.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Boil. Evol. 34, 1812–1819 (2017).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Currie, T. E. & Meade, A. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi, L. Z.) 263–286 (Springer, 2014).

  • 69.

    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2013).

  • 71.

    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).

  • 72.

    Lo, S. & Andrews, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front. Psychol. 6, 1171 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).

    Article 

    Google Scholar 

  • 74.

    Lemoine, N. P. Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928 (2019).

    Article 

    Google Scholar 

  • 75.

    Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar 

  • 76.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).

    Article 

    Google Scholar 

  • 77.

    McShane, B. B., Gal, D., Gelman, A., Robert, C. & Tackett, J. L. Abandon statistical significance. Am. Stat. 73, 235–245 (2019).

    Article 

    Google Scholar 

  • 78.

    Sawilowsky, S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8, 467–474 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Innovations in water accessibility

    Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau