in

Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird

  • 1.

    Norris, D. R. Carry-over effects and habitat quality in migratory populations. Oikos 109(1), 178–186 (2005).

    Article  Google Scholar 

  • 2.

    Ockendon, N., Leech, D. & Pearce-Higgins, J. W. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carryover effects from wintering grounds. Biol. Lett. 9(6). https://doi.org/10.1098/rsbl.2013.0669 (2013).

  • 3.

    Lehikoinen, A., Kilpi, M. & Öst, M. Winter climate affects subsequent breeding success of common eiders. Glob. Change Biol. 12(7), 1355–1365 (2006).

    ADS  Article  Google Scholar 

  • 4.

    Bearhop, S., Hilton, G. M., Votier, S. C. & Waldron, S. Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Biol. Lett. 271. https://doi.org/10.1098/rsbl.2003.0129 (2004).

  • 5.

    Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143(4), 698–722 (1994).

    Article  Google Scholar 

  • 6.

    Morrison, C. A., Alves, J. A., Gunnarsson, T. G., Þórisson, B. & Gill, J. A. Why do earlier-arriving migratory birds have better breeding success? Ecol. Evol. 9(15), 8856–8864 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Gill, J. A. et al. The buffer effect and large-scale population regulation in migratory birds. Nature 412, 436–438 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Finch, T., Pearce-Higgins, J. W., Leech, D. I. & Evans, K. L. Carry-over effects from passage regions are more important than breeding climate in determining the breeding phenology and performance of three avian migrants of conservation concern. Biodivers. Conserv. 23, 2427–2444 (2014).

    Article  Google Scholar 

  • 9.

    Legagneux, P., Fast, P. L. F., Gauthier, G. & Bêty, J. Manipulating individual state during migration provides evidence for carry-over effects modulated by environmental conditions. Proc. R. Soc. B. 279, 876–883 (2012).

    PubMed  Article  Google Scholar 

  • 10.

    Newton, I. The Migration Ecology of Birds (Academic Press, London, 2008).

    Google Scholar 

  • 11.

    Lok, T., Overdijk, O. & Piersma, T. The cost of migration: spoonbills suffer higher mortality during trans-Saharan spring migrations only. Biol. Lett., 11(1). https://doi.org/10.1098/rsbl.2014.0944 (2015).

  • 12.

    Bregnballe, T., Frederiksen, M. & Gregersen, J. Effects of distance to wintering area on arrival date and breeding performance in Great Cormorants Phalacrocorax carbo. Ardea. 94(3), 619–630 (2006).

    Google Scholar 

  • 13.

    Hötker, H. Arrival of Pied Avocets Recurvirostra avosetta at the breeding site: effects of winter quarters and consequences for reproductive success. Ardea. 90(3), 379–387 (2002).

    Google Scholar 

  • 14.

    Lundberg, P. The evolution of partial migration in birds. Trends Ecol. Evol. 3(7), 172–175 (1988).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. Partial migration: An introduction. Oikos 120(12), 1761–1763 (2011).

    Article  Google Scholar 

  • 16.

    Buchan, C., Gilroy, J. J., Catry, I. & Franco, A. M. A. Fitness consequences of different migratory strategies in partially migratory populations: A multi-taxa meta-analysis. J. Anim. Ecol. 89, 678–690 (2020).

    PubMed  Article  Google Scholar 

  • 17.

    Mueller, J. C., Pulido, F. & Kempenaers, B. Identification of a gene associated with avian migratory behaviour. Proc. R. Soc. B. 278, 2848–2856 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Griswold, C. K., Taylor, C. M. & Norris, D. R. The evolution of migration in a seasonal environment. Proc. R. Soc. B. 277, 2711–2720 (2010).

    PubMed  Article  Google Scholar 

  • 19.

    Chapman, B. B., Brönmark, C., Nilsson, J-Å. & Hansson, L-A. The ecology and evolution of partial migration. Oikos. 120(12), 1764–1775 (2011).

    Article  Google Scholar 

  • 20.

    Kokko, H. Directions in modelling partial migration: How adaptation can cause a population decline and why the rules of territory acquisition matter. Oikos 120(12), 1826–1837 (2011).

    Article  Google Scholar 

  • 21.

    Newton, I. Population limitation in migrants. Ibis. 146(2), 197–226 (2004).

    Article  Google Scholar 

  • 22.

    Robinson, R. A. et al. Travelling through a warming world: Climate change and migratory species. Endanger. Species Res. 7(2), 87–99 (2009).

    ADS  Article  Google Scholar 

  • 23.

    IPCC. Summary for Policymakers in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Stocker, T.F. et al.) (Cambridge University Press, 2013).

  • 24.

    Berthold, P. Genetic basis and evolutionary aspects of bird migration. Adv. Study Behav. 33, 175–229 (2003).

    Article  Google Scholar 

  • 25.

    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U.S.A. 105(42), 16195–16200 (2008).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    de Zoeten, T. & Pulido, F. How migratory populations become resident. Proc. R. Soc. B, 287, 20193011. https://doi.org/10.1098/rspb.2019.3011 (2020).

  • 27.

    Negro, J. J., de la Riva, M. & Bustamante, J. Patterns of winter distribution and abundance of Lesser Kestrel (Falco naumanni) in Spain. J. Raptor Res. 25, 30–35 (1991).

    Google Scholar 

  • 28.

    Anderson, A. M., Novak, S. J., Smith, J. F., Steenhof, K. & Heath, J. Nesting phenology, mate choice, and genetic divergence within a partially migratory population of American Kestrels. Auk. 133(1), 99–109 (2016).

    Article  Google Scholar 

  • 29.

    Lok, T., Veldhoen, L., Overdijk, O., Tinbergen, J. M. & Piersma, T. An age-dependent fitness cost of migration? Old trans-Saharan migrating spoonbills breed later than those staying in Europe, and late breeders have lower recruitment. J. Anim. Ecol. 86(5), 998–1009 (2017).

    PubMed  Article  Google Scholar 

  • 30.

    Catry, I. et al. Individual variation in migratory movements and winter behaviour of Iberian Lesser Kestrels Falco naumanni revealed by geolocators. Ibis. 153(1), 154–164 (2011).

    Article  Google Scholar 

  • 31.

    Rodríguez, C., Tapia, L., Kieny, F. & Bustamante, J. Temporal changes in lesser kestrel (Falco naumanni) diet during the breeding season in southern Spain. J. Raptor Res. 44(2), 120–128 (2010).

    Article  Google Scholar 

  • 32.

    Grist, H. et al. Reproductive performance of resident and migrant males, females and pairs in a partially migratory bird. J. Anim. Ecol. 86(5), 1010–1021 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Morganti, M., Ambrosini, R. & Sarà, M. Different trends of neighboring populations of Lesser Kestrel: effects of climate and other environmental conditions. Popul. Ecol. 61(3), 300–314 (2019).

    Article  Google Scholar 

  • 34.

    Hegemann, A., Marra, P. P. & Tieleman, B. I. Causes and consequences of partial migration in a passerine bird. Am. Nat. 186(4), 531–546 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Palacín, C., Alonso, J. C., Martín, C. A. & Alonso, J. A. Changes in bird-migration patterns associated with human-induced mortality. Conserv. Biol. 31(1), 106–115 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS One 10(7). https://doi.org/10.1371/journal.pone.0132312 (2015).

  • 37.

    Wilson, S., LaDeau, S. L., Tøttrup, A. P. & Marra, P. P. Range-wide effects of breeding- and nonbreeding-season climate on the abundance of a Neotropical migrant songbird. Ecology 92(9), 1789–1798 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Pilard, P., Lelong, V., Sonko, A. & Riols, C. Suivi et conservation du dortoir de rapaces insectivores (faucon crécerellette Falco naumanni et elanion naucler Chelictinia riocourii) de l’Ile de Kousmar (Kaolack/Sénégal). Alauda. 79(4), 295–312 (2011).

    Google Scholar 

  • 39.

    Rodríguez, A., Negro, J. J., Bustamante, J., Fox, J. & Afanasyev, V. Geolocators map the wintering grounds of threatened lesser kestrels in Africa. Divers. Distrib. 15(6), 1010–1016 (2009).

    Article  Google Scholar 

  • 40.

    Norris, D. R. & Taylor, C. M. Predicting the consequences of carry-over effects for migratory populations. Biol. Lett. 2(1). https://doi.org/10.1098/rsbl.2005.0397 (2006).

  • 41.

    Marra, P. P. et al. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. B. 282, 20150624. https://doi.org/10.1098/rspb.2015.0624 (2015).

    Article  Google Scholar 

  • 42.

    Negro, J. J. Falco naumanni Lesser Kestrel. BWP Update. 1, 49–56 (1997).

    Google Scholar 

  • 43.

    Bustamante, J. Predictive models for lesser kestrel Falco naumanni distribution, abundance and extinction in southern Spain. Bio. Conserv. 80(2), 153–160 (1997).

    Article  Google Scholar 

  • 44.

    Lepley, M., Brun, L., Foucart, A. & Pilard, P. Régime et comportement alimentaires du faucon crécerellette Falco naumanni en crau en période de reproduction et post-reproduction. Alauda. 68(3), 177–184 (2000).

    Google Scholar 

  • 45.

    Donázar, J. A., Negro, J. J. & Hiraldo, F. Functional analysis of mate-feeding in the Lesser Kestrel Falco naumanni. Ornis Scand. 23, 190–194 (1992).

    Article  Google Scholar 

  • 46.

    Braziotis, S. et al. Patterns of postnatal growth in a small falcon, the lesser kestrel Falco naumanni (Fleischer, 1818) (Aves: Falconidae). Eur. Zool. J. 84(1), 277–285 (2017).

    Article  Google Scholar 

  • 47.

    Donázar, J. A., Negro, J. J. & Hiraldo, F. A note on the adoption of alien young by lesser kestrels Falco naumanni. Ardea. 77, 443–444 (1991).

    Google Scholar 

  • 48.

    Rakhimberdiev, E. et al. Comparing inferences of solar geolocation data against high-precision GPS data: Annual movements of a double-tagged black-tailed godwit. J. Avian Biol. 47(4), 589–596 (2016).

    Article  Google Scholar 

  • 49.

    Lisovski, S. et al. Light-level geolocator analyses: A user’s guide. J Anim. Ecol. 89, 221–236 (2020).

    PubMed  Article  Google Scholar 

  • 50.

    Forsman, D. The Raptors of Europe and the Middle East: A Handbook of Field Identification (Christopher Helm, London, 2006).

    Google Scholar 

  • 51.

    Bounas, A. Premigratory moult in the lesser kestrel Falco naumanni. Avocetta. 43, 49–54 (2019).

    Google Scholar 

  • 52.

    Gilbert, N. Movement and Foraging Ecology of Partially Migrant Birds in a Changing World (University of East Anglia, Norwich, 2015).

    Google Scholar 

  • 53.

    Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere. 3, 44. https://doi.org/10.1890/ES12-00018.1 (2012).

    Article  Google Scholar 

  • 54.

    Tella, J. L. & Forero, M. G. Farmland habitat selection of wintering lesser kestrels in a Spanish pseudosteppe: implications for conservation strategies. Biodivers. Conserv. 9, 433–441 (2000).

    Article  Google Scholar 

  • 55.

    Piersma, T. & Davidson, N. Confusions of mass and size. Auk 108, 441–444 (1991).

    Google Scholar 

  • 56.

    Wood, A. S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4’. in R Package Version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).

  • 57.

    Bates, D., Machler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67. https://doi.org/10.18637/jss.v067.i01 (2015).

  • 58.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometric. J. 50(3), 346–363 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  • 59.

    Rousset, F. & Ferdy, J. B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37(8), 781–790 (2014).

    Article  Google Scholar 

  • 60.

    Shmueli, G. A useful distribution for fitting discrete data: Revival of the Conway–Maxwell–Poisson distribution. J. R. Stat. Soc. Ser. C App. Stat. 54, 127–142 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  • 61.

    Lynch, H. J., Thorson, J. T. & Shelton, A. O. Dealing with under- and over-dispersed count data in life history, spatial, and community ecology. Ecology 95(11), 3173–3180 (2014).

    Article  Google Scholar 

  • 62.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, New York, 2002).

    Google Scholar 

  • 63.

    Bartoń, K. MuMIn: Multi-model inference. in R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).

  • 64.

    Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96(9), 2370–2382 (2015).

    PubMed  Article  Google Scholar 

  • 65.

    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, http://www.r-project.org, 2018).

  • 66.

    Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land. Process. DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).

    Article  Google Scholar 

  • 67.

    Büttner, G. CORINE land cover and land cover change products. in Land Use and Cover Mapping in Europe. (eds. Manakos, I. & Braun, M.) 55–74 (Springer, 2014).

  • 68.

    Franco, A. M. A., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92