in

Changes in “natural antibiotic” metabolite composition during tetraploid wheat domestication

[adace-ad id="91168"]
  • 1.

    Zhang, X. et al. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc. Natl. Acad. Sci. U. S. A. 116, 23174–23181. https://doi.org/10.1073/pnas.1912599116 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Wittstock, J. & Gershenzon, U. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5, 300–307. https://doi.org/10.1016/s1369-5266(02)00264-9 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Stahl, E., Hilfiker, O. & Reymond, P. Plant-arthropod interactions: Who is the winner?. Plant J. 93, 703–728. https://doi.org/10.1111/tpj.13773 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    de Bruijn, W. J. C., Gruppen, H. & Vincken, J. P. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry 155, 233–243. https://doi.org/10.1016/j.phytochem.2018.07.005 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Arbona, V. & Gomez-Cadenas, A. Metabolomics of disease resistance in crops. Curr. Issues Mol. Biol. 19, 13–30 (2016).

    PubMed 

    Google Scholar 

  • 6.

    Ben-Abu, Y., Beiles, A., Flom, D. & Nevo, E. Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at “Evolution Canyon”, Mount Carmel, Israel. PLoS ONE 13(2), e0190424. https://doi.org/10.1371/journal.pone.0190424 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Frey, M., Schullehner, K., Dick, R., Fiesselmann, A. & Gierl, A. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70(15–16), 1645–1651. https://doi.org/10.1016/j.phytochem.2009.05.012 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Zdero, C., Bohlmann, F. & Niemeyer, H. M. Isocedrene and guaiane derivatives from Pleocarphus revolutus. J. Nat. Prod. 51, 509–512. https://doi.org/10.1021/np50057a009 (1988).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Carlsen, S. C. et al. Allelochemicals in rye (Secale cereale L.): Cultivar and tissue differences in the production of benzoxazinoids and phenolic acids. Nat. Prod. Commun. 4, 199–208 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Martos, A., Givovich, A. & Niemeyer, H. M. Effect of DIMBOA, an aphid resistance factor in wheat, on the aphid predator Eriopis connexa Germar (Coleoptera: Coccinellidae). J. Chem. Ecol. 18, 469–479. https://doi.org/10.1007/BF00994245 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Perez, F. J. Allelopathic effect of hydroxamic acids from cereals on Avena sativa and A. fatua Francisco. Phytochemistry 29, 773–776. https://doi.org/10.1016/0031-9422(90)80016-A (1990).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Dutartre, L., Hilliou, F. & Feyereisen, R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: Gene duplications and origin of the Bx cluste. BMC Evol. Biol. 12, 64. https://doi.org/10.1186/1471-2148-12-64 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Meredith, A., Wilkes, D. R. M. & Copeland, L. Hydroxamic acids in cereal roots inhibit the growth of take-all. Soil Biol. Biochem. 31, 1831–1836. https://doi.org/10.1016/S0038-0717(99)00104-2 (1999).

    Article 

    Google Scholar 

  • 14.

    Macias, F. A., Valerin, M. D., Oliveros-Bastidas, A., Castellano, D. & Simonet, A. M. Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. phytotoxicity on standard target species (STS). J. Agric. Food Chem. 53, 538–548. https://doi.org/10.1021/jf0484071 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Nakagawa, E., Amano, T., Hirai, N. & Iwamura, H. Partial purification and characterisation of a 2,4,5-trichlorophenol detoxifying O-glucosyltransferase from wheat. Phytochemistry 38, 1349–1354. https://doi.org/10.1016/s0031-9422(03)00191-2 (2003).

    Article 

    Google Scholar 

  • 16.

    Levy, A. A. & Feldman, M. Intra-population and inter-population variations in grain protein percentage in wild tetraploid wheat, Triticum-turgidum var dicoccoides. Euphytica 42(3), 251–258. https://doi.org/10.1007/BF00034461 (1989).

    Article 

    Google Scholar 

  • 17.

    Święcicka, M. et al. Changes in benzoxazinoid contents and the expression of the associated genes in rye (Secale cereale L.) due to brown rust and the inoculation procedure. PLoS ONE https://doi.org/10.1371/journal.pone.0233807 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Levy, A. A., Galili, G. & Feldman, M. Polymorphism and genetic-control of high molecular-weight glutenin subunits in wild tetraploid wheat Triticum-turgidum var dicoccoides. Heredity 61, 63–72. https://doi.org/10.1007/BF00034461 (1988).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Abu-Zaitoun, S. et al. Unlocking the genetic diversity within a Middle-East panel of durum wheat landraces for adaptation to semi-arid climate. Agronomy 8, 233–245 (2018).

    Article 

    Google Scholar 

  • 20.

    Avivi, L. High grain protein content in wild wheat. Can J. Genet. Cytol. 19, 569–570. https://doi.org/10.1139/g77-062 (1977).

    Article 

    Google Scholar 

  • 21.

    Ozkan, H., Levy, A. A. & Feldman, M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 8, 1735–1747. https://doi.org/10.1105/tpc.010082 (2001).

    Article 

    Google Scholar 

  • 22.

    Yang, M. et al. Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system. PLoS ONE https://doi.org/10.1371/journal.pone.0115052 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Hanhineva, K. et al. Non-targeted analysis of spatial metabolite composition in strawberry (Fragariaxananassa) flowers. Phytochemistry 69(13), 2463–2481. https://doi.org/10.1016/j.phytochem.2008.07.009 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Haas, M., Schreiber, M. & Mascher, M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 61(3), 204–225. https://doi.org/10.1111/jipb.12737 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Beleggia, R. et al. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 33(7), 1740–1753. https://doi.org/10.1093/molbev/msw050 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Ugine, T. A., Krasnoff, S. B., Grebenok, R. J., Behmer, S. T. & Losey, E. Prey nutrient content creates omnivores out of predators. Ecol. Lett. 22, 275–283. https://doi.org/10.1111/ele.13186 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Coll, M. & Guershon, M. Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annu. Rev. Entomol. 47, 267–297. https://doi.org/10.1146/annurev.ento.47.091201.145209 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Calvert, W. H., Hedrick, L. E. & Brower, L. P. Mortality of the monarch butterfly (Danaus plexippus L.): Avian predation at five overwintering sites in Mexico. Science 204, 847–851. https://doi.org/10.1126/science.204.4395.847 (1979).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Skelhorn, J. & Rowe, C. Avian predators taste-reject aposematic prey on the basis of their chemical defence. Biol. Lett. 2, 348–350. https://doi.org/10.1098/rsbl.2006.0483 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Kumar, P., Pandit, S. S., Steppuhn, A. & Baldwin, L. T. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proc. Natl. Acad. Sci. U.S.A. 111, 1245–1252. https://doi.org/10.1073/pnas.1314848111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Matthews, S. B. et al. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE 7(8), e44179. https://doi.org/10.1371/journal.pone.0044179 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T. & Siddiqui, Z. H. Selective effect of pesticides on plant. Crit. Rev. Food Sci. Nutr. 56(1), 160–179. https://doi.org/10.1080/10408398.2013.787969 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    Masisi, K., Beta, T. & Moghadasian, M. H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 96, 90–97. https://doi.org/10.1016/j.foodchem.2015.09.021 (2016).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Hostetler, G. L., Ralston, R. A. & Schwartz, S. J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 8(3), 423–435. https://doi.org/10.3945/an.116.012948 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Perez-Vizcaino, F. & Fraga, C. G. Research trends in flavonoids and health. Arch. Biochem. Biophys. 646, 107–112. https://doi.org/10.1016/j.abb.2018.03.022 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Nevo, E. “Evolution Canyon,” a potential microscale monitor of global warming across life. Proc. Natl. Acad. Sci. U. S. A. 109(8), 2960–2965. https://doi.org/10.1073/pnas.1120633109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Nevo, E. et al. Evolution of wild cereals during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. U. S. A. 109(9), 3412–3415. https://doi.org/10.1073/pnas.1121411109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Hebelstrup, K. H. Differences in nutritional quality between wild and domesticated forms of barley and emmer wheat. Plant Sci. 256, 1–4. https://doi.org/10.1016/j.plantsci.2016.12.006 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346), 93–97. https://doi.org/10.1126/science.aan0032 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3(6), 429–441. https://doi.org/10.1038/nrg817 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Zörb, C., Langenkämper, G., Betsche, T., Niehaus, K. & Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54(21), 8301–8306. https://doi.org/10.1016/j.phytochem.2007.06.020 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Zörb, C., Niehaus, K., Barsch, A., Betsche, T. & Langenkämper, G. Levels of compounds and metabolites in wheat ears and grains in organic and conventional agriculture. J. Agric. Food Chem. 57(20), 9555–9562. https://doi.org/10.1021/jf9019739 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Zörb, C., Betsche, T. & Langenkämper, G. Search for diagnostic proteins to prove authenticity of organic wheat grains (Triticum aestivum L.). J. Agric. Food Chem. 57(7), 2932–2937. https://doi.org/10.1021/jf802923r (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Hanhineva, K. et al. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. J. Agric. Food Chem. 59(3), 921–927. https://doi.org/10.1021/jf103612u (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Brodsky, L., Moussaieff, A., Shahaf, N., Aharoni, A. & Rogachev, I. Evaluation of peak picking quality in LC–MS metabolomics data. Anal. Chem. 82(22), 9177–9187. https://doi.org/10.1021/ac101216e (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Ben-Abu, Y. et al. Durum wheat evolution—A genomic analysis. Proc. Int. Symp. Genet. Breed. Durum Wheat 110, 29–44 (2014).

    Google Scholar 

  • 47.

    Iannucci, A., Fragasso, M., Beleggia, R., Nigro, F. & Papa, R. Evolution of the crop rhizosphere: Impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Front. Plant Sci. 8, 2124. https://doi.org/10.3389/fpls.2017.02124 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Okada, K., Abe, H. & Arimura, G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 56(1), 16–27. https://doi.org/10.1093/pcp/pcu158 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Givovich, A., Morse, S., Cerda, H., Niemeyer, H. M. & Wratten, S. D. Hydroxamic acid glucosides in honeydew of aphids feeding on wheat. J. Chem. Ecol. 18, 841–846. https://doi.org/10.1007/BF00988324 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Shavit, R., Batyrshina, Z. S., Dotan, N. & Tzin, V. Cereal aphids differently affect benzoxazinoid levels in durum wheat. PLoS ONE https://doi.org/10.1371/journal.pone.0208103 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Extending the natural adaptive capacity of coral holobionts

    A microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission