in

Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau

[adace-ad id="91168"]
  • 1.

    Cerdà, A., González Pelayo, Ó., Pereira, P., Novara, A., Iserloh, T. et al. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator. In Geophysical Research (2015).

  • 2.

    Fu, B. J. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 5, 76–81 (1989).

    Article 

    Google Scholar 

  • 3.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304(5677), 1623–1627 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Govers, G., Van Oost, K. & Wang, Z. Scratching the critical zone: the global footprint of agricultural soil erosion. Procedia Earth Planet. Sci. 10, 313–318 (2014).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Zhou, P., Wen, A., Zhang, X. & He, X. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environ. Earth Sci. 68(3), 633–639 (2012).

    Google Scholar 

  • 6.

    Aldaood, A., Bouasker, M. & Al-Mukhtar, M. Soil–water characteristic curve of lime treated gypseous soil. Appl. Clay Sci. 102, 128–138 (2014).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Satyanaga, A., Rahardjo, H., Leong, E. C. & Wang, J. Y. Water characteristic curve of soil with bimodal grain-size distribution. Comput. Geotech. 48(4), 51–61 (2013).

    Article 

    Google Scholar 

  • 8.

    Li, X., Li, J. H. & Zhang, L. M. Predicting bimodal soil–water characteristic curves and permeability functions using physically based parameters. Comput. Geotech. 57(4), 85–96 (2014).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Breda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006).

    Article 

    Google Scholar 

  • 10.

    Zhao, J., Lin, L., Yang, K., Liu, Q. & Qian, G. Influences of land use on water quality in a reticular river network area: a case study in Shanghai, China. Landsc. Urban Plan. 137, 20–29 (2015).

    Article 

    Google Scholar 

  • 11.

    McIntosh, J. C. & Horne, D. J. Causes of repellency: I. The nature of the hydrophobic compounds found in a New Zealand development sequence of yellow-brown sands. In Proceedings of the 2nd National Water Repellency Workshop, 1–5 August, Perth, Western Australia, 8–12 (1994).

  • 12.

    de Jonge, L. W., Moldrup, P. & Jacobsen, O. H. Soil-water content dependency of water repellency in soils: effect of crop type, soil management, and physical–chemical parameters. Soil Sci. 172, 577–588 (2007).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Hallett, P. D., Ritz, K. & Wheatley, R. E. Microbial derived water repellency in golf course soil. Int. Turfgrass Soc. Res. J. 9, 518–524 (2001).

    Google Scholar 

  • 14.

    Caravaca, F., Masciandaro, G. & Ceccanti, B. Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Till. Res. 68(1), 23–30 (2002).

    Article 

    Google Scholar 

  • 15.

    Li, H., Yan, F. C., Jiao, J. Y., Tang, B. Z. & Zhang, Y. F. Soil water availability and holding capacity of different vegetation types in hilly-gullied region of the loess plateau. Acta Ecol. Sin. 38(11) (2018).

  • 16.

    Ritchie, J. T. Soil water availability. Plant Soil 58(58), 327–338 (1981).

    Article 

    Google Scholar 

  • 17.

    Wan, S., Norby, R. J., Ledford, J. & Weltzin, J. F. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Change Biol. 13(11), 2411–2424 (2007).

    ADS 
    Article 

    Google Scholar 

  • 18.

    An, S. et al. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. CATENA 75(3), 248–256 (2008).

    Article 

    Google Scholar 

  • 19.

    Wang, K. B., Shao, R. X. & Shangguan, Z. P. Changes in species richness and community productivity during succession on the Loess Plateau (China). Pol. J. Ecol. 58(3), 501–510 (2010).

    Google Scholar 

  • 20.

    Wang, Y., Shao, M. & Shao, H. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 381(1–2), 9–17 (2010).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Reatto, A., Silva, E. M. D., Bruand, A., Martins, E. S. & Lima, J. E. F. W. Validity of the centrifuge method for determining the water retention properties of tropical soils. Soil Sci. Soc. Am. J. 72(6), 1547–1553 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Jia, G. M., Cao, J., Wang, C. Y. & Wang, G. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwuling northwest China. For. Ecol. Manag. 217, 117–125 (2005).

    Article 

    Google Scholar 

  • 23.

    Ghanbarian-Alavijeh, B. & Millán, H. The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma 151(3–4), 224–232 (2009).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Wang, M. B., Chai, B. F., Li, H. J. & Feng, C. P. Soil water holding capacity and soil available water in plantations in the loess region. Sci. Silvae Sin. 35(2), 7–14 (1999).

    Google Scholar 

  • 25.

    Yang, L., Wei, W., Chen, L. D. & Mo, B. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 475(6), 111–122 (2012).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Huang, J. H., Liao, Y. C., Gao, M. S. & Yin, R. J. Effects of tillage and mulching on orchard soil moisture content and temperature in Loess Plateau. Chin. J. Appl. Ecol. 20(11), 2652–2658 (2009).

    Google Scholar 

  • 27.

    Borken, W., Savage, K., Davidson, E. A. & Trumbore, S. E. Effects experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob. Change Biol. 12, 177–193 (2006).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Scott-Denton, L. E., Rosenstiel, T. N. & Monson, R. K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob. Change Biol. 12(12), 205–216 (2006).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Zhang, Y. W., Deng, L., Yan, W. M. & Shangguan, Z. P. Interaction of soil water storage dynamics and long-term natural vegetation succession on the Loess Plateau, China. CATENA 137, 52–60 (2016).

    Article 

    Google Scholar 

  • 30.

    Zhao, S. W., Zhao, Y. G. & Wu, J. S. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau. Sci. China Earth Sci. 53, 617–625 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Udawatta, R. P. & Anderson, S. H. Ct-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers. Geoderma 145(3–4), 381–389 (2008).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Honda, E. A. & Durigan, G. Woody encroachment and its consequences on hydrological processes in the Savannah. Philos. Trans. R. Soc. B 371(1703), 20150313 (2016).

    Article 

    Google Scholar 

  • 33.

    Zhang, Y. W. & Shangguan, Z. P. Interaction of soil water storage and stoichiometrical characteristics in the long-term natural vegetation restoration on the Loess Plateau. Ecol. Eng. 116, 7–13 (2018).

    Article 

    Google Scholar 

  • 34.

    Wang, Z. H. et al. Effects of plant species diversity on soil conservation and stability in the secondary succession phases of a semi-humid evergreen broadleaf forest in China. J. Soil Water Conserv. 67, 311–320 (2012).

    Article 

    Google Scholar 

  • 35.

    Yang, L., Wei, W., Chen, L. D. & Wang, J. L. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. CATENA 115, 123–133 (2014).

    Article 

    Google Scholar 

  • 36.

    Wang, L., Mu, Y., Zhang, Q. F. & Jia, Z. K. Effects of vegetation restoration on soil physical properties in the wind–water erosion region of the northern Loess Plateau of China. Clean: Soil, Air, Water 40(1), 7–15 (2012).

    Google Scholar 

  • 37.

    Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Zhang, Y. W. & Shangguan, Z. P. The coupling interaction of soil water and organic carbon storage in the long vegetation restoration on the Loess Plateau. Ecol. Eng. 91, 574–581 (2016).

    Article 

    Google Scholar 

  • 39.

    Luo, Y. Q. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How trees and forests reduce risks from climate change

    Ekotrope makes building energy-efficient homes easier