in

Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster

[adace-ad id="91168"]
  • 1.

    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B. 267, 739–745 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).

    Article 

    Google Scholar 

  • 3.

    Kimura, M. T. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140, 442–449 (2004).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Gaston, K. J. & Chown, S. L. Elevation and climatic tolerance: A test using dung beetles. Oikos 86, 584–590 (1999).

    Article 

    Google Scholar 

  • 5.

    MacMillan, H. A. Dissecting cause from consequence: a systematic approach to thermal limits. J. Exp. Biol. 222, jeb191593 (2019).

  • 6.

    Overgaard, J. & MacMillan, H. A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187–208 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Armstrong, G. A. B., Rodríguez, E. C. & Meldrum Robertson, R. Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma. J. Insect Physiol. 58, 1511–1516 (2012).

  • 8.

    Rodgers, C. I., Armstrong, G. A. B. & Robertson, R. M. Coma in response to environmental stress in the locust: a model for cortical spreading depression. J. Insect Physiol. 56, 980–990 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Andersen, M. K. & Overgaard, J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 233, 10–16 (2019).

  • 10.

    Koštál, V., Vambera, J. & Bastl, J. On the nature of pre-freeze mortality in insects: Water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J. Exp. Biol. 207, 1509–1521 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Zachariassen, K. E., Kristiansen, E. & Pedersen, S. A. Inorganic ions in cold-hardiness. Cryobiology 48, 126–133 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    MacMillan, H. A. & Sinclair, B. J. The role of the gut in insect chilling injury: Cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    MacMillan, H. A., Williams, C. M., Staples, J. F. & Sinclair, B. J. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. PNAS 109, 20750–20755 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    MacMillan, H. A., Findsen, A., Pedersen, T. H. & Overgaard, J. Cold-induced depolarization of insect muscle: Differing roles of extracellular K+ during acute and chronic chilling. J. Exp. Biol. 217, 2930–2938 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Bayley, J. S., Sørensen, J. G., Moos, M., Koštál, V. & Overgaard, J. Cold-acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R439–R447 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Bayley, J. S. et al. Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect. PNAS 115, E9737–E9744 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Carrington, J., Andersen, M. K., Brzezinski, K. & MacMillan, H. A. Hyperkalemia, not apoptosis, accurately predicts chilling injury in individual locusts. Proc. R. Soc. B. (in press).

  • 18.

    Koštál, V., Yanagimoto, M. & Bastl, J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 143, 171–179 (2006).

  • 19.

    MacMillan, H. A., Baatrup, E. & Overgaard, J. Concurrent effects of cold and hyperkalaemia cause insect chilling injury. Proc. R. Soc. B. 282 (2015).

  • 20.

    Garcia, M. J., Littler, A. S., Sriram, A. & Teets, N. M. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 74, 1437–1450 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Gerken, A. R., Mackay, T. F. C. & Morgan, T. J. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. J. Therm. Biol. 59, 77–85 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Colinet, H. & Hoffmann, A. A. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26, 84–93 (2012).

    Article 

    Google Scholar 

  • 23.

    MacMillan, H. A., Andersen, J. L., Loeschcke, V. & Overgaard, J. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R823–R831 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Ransberry, V. E., MacMillan, H. A. & Sinclair, B. J. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster. Physiol. Biochem. Zool. 84, 553–559 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B. 278, 1823–1830 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).

    Article 

    Google Scholar 

  • 27.

    Hoffmann, A. A., Shirriffs, J. & Scott, M. Relative importance of plastic vs genetic factors in adaptive differentiation: Geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct. Ecol. 19, 222–227 (2005).

    Article 

    Google Scholar 

  • 28.

    Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).

    Article 

    Google Scholar 

  • 29.

    Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: Phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).

    Article 

    Google Scholar 

  • 30.

    Gibert, P. & Huey, R. B. Chill-coma temperature in Drosophila: Effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74, 429–434 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Hori, Y. & Kimura, M. T. Relationship between cold stupor and cold tolerance in Drosophila (Diptera: Drosophilidae). Environ. Entomol. 27, 1297–1302 (1998).

    Article 

    Google Scholar 

  • 32.

    Teets, N. M. & Hahn, D. A. Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. J. Evol. Biol. 31, 543–555 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Pool, J. E., Braun, D. T. & Lack, J. B. Parallel evolution of cold tolerance within Drosophila melanogaster. Mol. Biol. Evol. 34, 349–360 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Mansourian, S. et al. Wild African Drosophila melanogaster are seasonal specialists on marula fruit. Curr. Biol. 28, 3960-3968.e3 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Pool, J. E. et al. Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genetics 8, e1003080 (2012).

  • 37.

    Baudry, E., Viginier, B. & Veuille, M. Non-African populations of Drosophila melanogaster have a unique origin. Mol. Biol. Evol. 21, 1482–1491 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    MacMillan, H. A., Andersen, J. L., Davies, S. A. & Overgaard, J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 5, 18607 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Chen, C.-P. & Walker, V. K. Cold-shock and chilling tolerance in Drosophila. J. Insect Physiol. 40, 661–669 (1994).

    Article 

    Google Scholar 

  • 40.

    Hoffmann, A. A. & Watson, M. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142, S93–S113 (1993).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Ørsted, M., Hoffmann, A. A., Rohde, P. D., Sørensen, P. & Kristensen, T. N. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122, 315–325 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Gerken, A. R., Eller, O. C., Hahn, D. A. & Morgan, T. J. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. PNAS 112, 4399–4404 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Nyamukondiwa, C., Terblanche, J. S., Marshall, K. E. & Sinclair, B. J. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24, 1927–1938 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35, 874–885 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Gilchrist, G. W., Huey, R. B. & Partridge, L. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol. Zool. 70, 403–414 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Maclean, H. J., Kristensen, T. N., Sørensen, J. G. & Overgaard, J. Laboratory maintenance does not alter ecological and physiological patterns among species: A Drosophila case study. J. Evol. Biol. 31, 530–542 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, jeb169342 (2018).

  • 48.

    Nilson, T. L., Sinclair, B. J. & Roberts, S. P. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect Physiol. 52, 1027–1033 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Hazell, S. P. & Bale, J. S. Low temperature thresholds: are chill coma and CTmin synonymous?. J. Insect Physiol. 57, 1085–1089 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Bertram, G. C. L. The low temperature limit of activity of arctic insects. J. Anim. Ecol. 4, 35–42 (1935).

    Article 

    Google Scholar 

  • 51.

    Sinclair, B. J., Coello Alvarado, L. E. & Ferguson, L. V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 53, 180–197 (2015).

  • 52.

    MacMillan, H. A. et al. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. J. Exp. Biol. 221, jeb185884 (2018).

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    A graduate student who goes to extremes

    MIT students and alumni “hack” Hong Kong Kowloon East