in

Climate warming enhances microbial network complexity and stability

  • 1.

    Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    CAS  Article  Google Scholar 

  • 2.

    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS  Article  Google Scholar 

  • 3.

    Pržulj, N. & Malod-Dognin, N. Network analytics in the age of big data. Science 353, 123–124 (2016).

    Article  Google Scholar 

  • 4.

    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).

    Article  Google Scholar 

  • 5.

    Okuyama, T. & Holland, J. N. Network structural properties mediate the stability of mutualistic communities. Ecol. Lett. 11, 208–216 (2008).

    Article  Google Scholar 

  • 6.

    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).

    Article  Google Scholar 

  • 7.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).

    Article  Google Scholar 

  • 8.

    Toju, H. et al. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 1, 0024 (2017).

    Article  Google Scholar 

  • 9.

    Montesinos-Navarro, A., Hiraldo, F., Tella, J. L. & Blanco, G. Network structure embracing mutualism–antagonism continuums increases community robustness. Nat. Ecol. Evol. 1, 1661–1669 (2017).

    Article  Google Scholar 

  • 10.

    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).

    Article  CAS  Google Scholar 

  • 11.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    CAS  Article  Google Scholar 

  • 12.

    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article  CAS  Google Scholar 

  • 13.

    García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).

    Article  CAS  Google Scholar 

  • 14.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 15.

    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600 (2016).

    CAS  Article  Google Scholar 

  • 16.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 17.

    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).

    Article  Google Scholar 

  • 18.

    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).

    Article  Google Scholar 

  • 19.

    Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).

    Article  Google Scholar 

  • 20.

    Zhou, J. et al. Functional molecular ecological networks. mBio 1, e00169–10 (2010).

    Google Scholar 

  • 21.

    Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  Google Scholar 

  • 22.

    D’Amen, M., Mod, H. K., Gotelli, N. J. & Guisan, A. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography 41, 1233–1244 (2018).

    Article  Google Scholar 

  • 23.

    Barner, A. K., Coblentz, K. E., Hacker, S. D. & Menge, B. A. Fundamental contradictions among observational and experimental estimates of non-trophic species interactions. Ecology 99, 557–566 (2018).

    Article  Google Scholar 

  • 24.

    Goberna, M. et al. Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes. Mol. Ecol. Resour. 19, 1552–1564 (2019).

    Article  Google Scholar 

  • 25.

    Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).

    Article  Google Scholar 

  • 26.

    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).

    Article  CAS  Google Scholar 

  • 27.

    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    CAS  Article  Google Scholar 

  • 28.

    Herren, C. M. & McMahon, K. D. Cohesion: a method for quantifying the connectivity of microbial communities. ISME J. 11, 2426–2438 (2017).

    Article  Google Scholar 

  • 29.

    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2, e00122–11 (2011).

    Article  Google Scholar 

  • 30.

    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Zelikova, T. J. et al. Long-term exposure to elevated CO2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie. Proc. Natl Acad. Sci. USA 111, 15456–15461 (2014).

    CAS  Article  Google Scholar 

  • 32.

    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    CAS  Article  Google Scholar 

  • 33.

    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).

    Article  Google Scholar 

  • 34.

    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).

  • 35.

    Guo, X. et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nat. Commun. 11, 4897 (2020).

    CAS  Article  Google Scholar 

  • 36.

    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    CAS  Article  Google Scholar 

  • 37.

    Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).

    CAS  Article  Google Scholar 

  • 38.

    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).

    Article  Google Scholar 

  • 39.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    CAS  Article  Google Scholar 

  • 40.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Article  Google Scholar 

  • 41.

    Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).

    Google Scholar 

  • 42.

    Treves, D. S., Xia, B., Zhou, J. & Tiedje, J. M. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb. Ecol. 45, 20–28 (2003).

    CAS  Article  Google Scholar 

  • 43.

    Zhou, J., Xia, B., Huang, H., Palumbo, A. V. & Tiedje, J. M. Microbial diversity and heterogeneity in sandy subsurface soils. Appl. Environ. Microbiol. 70, 1723–1734 (2004).

    CAS  Article  Google Scholar 

  • 44.

    Zhou, J. et al. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68, 326–334 (2002).

    CAS  Article  Google Scholar 

  • 45.

    O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).

    Article  Google Scholar 

  • 46.

    Penton, C. R., Gupta, V. V. S. R., Yu, J. & Tiedje, J. M. Size matters: assessing optimum soil sample size for fungal and bacterial community structure analyses using high throughput sequencing of rRNA gene amplicons. Front. Microbiol. 7, 824 (2016).

    Google Scholar 

  • 47.

    Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).

    CAS  Article  Google Scholar 

  • 48.

    Hurt, R. A. et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ. Microbiol. 67, 4495–4503 (2001).

    CAS  Article  Google Scholar 

  • 49.

    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).

    Article  CAS  Google Scholar 

  • 51.

    Wen, C. et al. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS ONE 12, e0176716 (2017).

    Article  CAS  Google Scholar 

  • 52.

    Zhou, J. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288–14 (2015).

    CAS  Article  Google Scholar 

  • 53.

    Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).

    CAS  Article  Google Scholar 

  • 54.

    Luo, F. et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics 8, 299 (2007).

    Article  CAS  Google Scholar 

  • 55.

    Luo, F., Zhong, J., Yang, Y., Scheuermann, R. H. & Zhou, J. Application of random matrix theory to biological networks. Phys. Lett. A 357, 420–423 (2006).

    CAS  Article  Google Scholar 

  • 56.

    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).

    Article  Google Scholar 

  • 57.

    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).

    Article  Google Scholar 

  • 58.

    Mehta, M. L. Random Matrices 2nd edn (Elsevier, 2004).

  • 59.

    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N. & Stanley, H. E. Universal and non-universal properties of cross-correlations in financial time series. Phys. Rev. Lett. 83, 1471–1474 (1999).

    CAS  Article  Google Scholar 

  • 60.

    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44, 139–160 (1982).

    Google Scholar 

  • 61.

    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article  Google Scholar 

  • 62.

    Pawlowsky-Glahn, V. & Egozcue, J. J. Compositional data and their analysis: an introduction. Geol. Soc. Spec. Publ. 264, 1–10 (2006).

    CAS  Article  Google Scholar 

  • 63.

    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    CAS  Article  Google Scholar 

  • 64.

    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066 (2019).

    CAS  Article  Google Scholar 

  • 65.

    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).

    CAS  Article  Google Scholar 

  • 66.

    R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

  • 67.

    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

    Article  Google Scholar 

  • 68.

    Oksanen, J. et al. vegan: Community Ecology Package. Version 2.5-6 (2019).

  • 69.

    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    Article  CAS  Google Scholar 

  • 70.

    Yuan, M.M. et al. Mengting-Maggie-Yuan/warming-network-complexity-stability: warming-network-complexity-stability-v1.0. Version 1.0 (Zenodo, 2021); https://doi.org/10.5281/zenodo.4383469

  • 71.

    He, Z. et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J. 4, 1167–1179 (2010).

    CAS  Article  Google Scholar 

  • 72.

    He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 (2007).

    CAS  Article  Google Scholar 

  • 73.

    Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892–16898 (2019).

    CAS  Article  Google Scholar 

  • 74.

    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).

    Article  Google Scholar 

  • 75.

    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  • 76.

    Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    CAS  Article  Google Scholar 

  • 77.

    Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Article  Google Scholar 

  • 78.

    Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    Article  CAS  Google Scholar 

  • 79.

    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    CAS  Article  Google Scholar 

  • 80.

    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Reply to ‘can we predict microbial keystones?’. Nat. Rev. Microbiol. 17, 194 (2019).

    CAS  Article  Google Scholar 

  • 81.

    Röttjers, L. & Faust, K. Can we predict keystones? Nat. Rev. Microbiol. 17, 193 (2019).

    Article  CAS  Google Scholar 

  • 82.

    Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).

    Article  CAS  Google Scholar 

  • 83.

    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

    CAS  Article  Google Scholar 

  • 84.

    Hui, C., McGeoch, M. A., Harrison, A. E. S. & Bronstein, E. J. L. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).

    Article  Google Scholar 

  • 85.

    Shi, Z. et al. Functional gene array-based ultrasensitive and quantitative detection of microbial populations in complex communities. mSystems 4, e00296–19 (2019).

    Google Scholar 

  • 86.

    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 46 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Keeping an eye on the fusion future