in

Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish

[adace-ad id="91168"]
  • 1.

    IPCC. The Ocean and Cryosphere in a changing Climate—Summary for Policymakers (2019).

  • 2.

    Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic. Bull. Am. Meteorol. Soc. 96, 2079–2105 (2015).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Borgå, K. The Arctic ecosystem: a canary in the coal mine for global multiple stressors. Environ. Toxicol. Chem. 38, 487–488 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Onarheim, I. H., Eldevik, T., Smedsrud, L. H. & Stroeve, J. C. Seasonal and regional manifestation of Arctic Sea ice loss. J. Clim. 31, 4917–4932 (2018).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Screen, J. A. & Simmonds, I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett. 37, 1–5 (2010).

    Article 

    Google Scholar 

  • 8.

    Onarheim, I. H. & Årthun, M. Toward an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Champine, R. D., Morris, R. & Elder, S. The melting Arctic is now open for business. National Geographic Magazine (2019).

  • 10.

    Orourke, R. et al. Changes in the Arctic: Background and Issues for Congress 129 (DIANE Publishing, 2020).

    Google Scholar 

  • 11.

    Eriksen, E., Huserbråten, M., Gjøsæter, H., Vikebø, F. & Albretsen, J. Polar cod egg and larval drift patterns in the Svalbard archipelago. Polar Biol. https://doi.org/10.1007/s00300-019-02549-6 (2019).

    Article 

    Google Scholar 

  • 12.

    Eguíluz, V. M., Fernández-Gracia, J., Irigoien, X. & Duarte, C. M. A quantitative assessment of Arctic shipping in 2010–2014. Sci. Rep. 6, 30682 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Ellis, B., & Brigham, L. Arctic Marine Shipping Assessment 2009 Report. (2009).

  • 14.

    Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Pollino, C. A. & Holdway, D. A. Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Ecotoxicol. Environ. Saf. 52, 180–189 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Miller, B. & Kendall, A. W. Early Life History of Marine Fishes (University of California Press, 2009). https://doi.org/10.1525/9780520943766.

    Google Scholar 

  • 17.

    Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Petersen, G. I. & Kristensen, P. Bioaccumulation of lipophilic substances in fish early life stages. Environ. Toxicol. Chem. 17, 1385–1395 (1998).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Jung, J.-H. et al. Differential toxicokinetics determines the sensitivity of two marine embryonic fish exposed to Iranian heavy crude oil. Environ. Sci. Technol. 49, 13639–13648 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Ingvarsdóttir, A. et al. Effects of different concentrations of crude oil on first feeding larvae of Atlantic herring (Clupea harengus). J. Mar. Syst. 93, 69–76 (2012).

    Article 

    Google Scholar 

  • 22.

    Pasparakis, C., Esbaugh, A. J., Burggren, W. & Grosell, M. Physiological impacts of deepwater horizon oil on fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 224, 108558 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Steiner, N. S. et al. Impacts of the changing ocean-sea ice system on the key forage fish arctic cod (Boreogadus saida) and subsistence fisheries in the western Canadian arctic—evaluating linked climate, ecosystem and economic (CEE) models. Front. Mar. Sci. 6, 179 (2019).

    Article 

    Google Scholar 

  • 24.

    Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B Biol. Sci. 282, 20151546 (2015).

    Article 

    Google Scholar 

  • 25.

    Harter, B. B., Elliott, K. H., Divoky, G. J. & Davoren, G. K. Arctic cod (Boreogadus saida) as prey: fish length-energetics relationships in the Beaufort Sea and Hudson Bay. Arctic 66, 191–196 (2013).

    Article 

    Google Scholar 

  • 26.

    Graham, M. & Hop, H. Aspects of reproduction and larval biology of Arctic cod (Boreogadus saida). Arctic 48, 130–135 (1995).

    Article 

    Google Scholar 

  • 27.

    Gradinger, R. R. & Bluhm, B. A. In-situ observations on the distribution and behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the High Arctic Canada Basin. Polar Biol. 27, 595–603 (2004).

    Article 

    Google Scholar 

  • 28.

    Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).

    Article 

    Google Scholar 

  • 29.

    ICES. Report of the Arctic Fisheries Working Group. 859 http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2018/AFWG/00-AFWG%202018%20Report.pdf (2018).

  • 30.

    Eriksen, E., Ingvaldsen, R. B., Nedreaas, K. & Prozorkevich, D. The effect of recent warming on polar cod and beaked redfish juveniles in the Barents Sea. Reg. Stud. Mar. Sci. 2, 105–112 (2015).

    Article 

    Google Scholar 

  • 31.

    Astthorsson, O. S. Distribution, abundance and biology of polar cod, Boreogadus saida, in Iceland–East Greenland waters. Polar Biol. 39, 995–1003 (2016).

    Article 

    Google Scholar 

  • 32.

    Divoky, G. J., Lukacs, P. M. & Druckenmiller, M. L. Effects of recent decreases in arctic sea ice on an ice-associated marine bird. Prog. Oceanogr. 136, 151–161 (2015).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Hansen, M. O., Nielsen, T. G., Stedmon, C. A. & Munk, P. Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol. Oceanogr. 57, 634–644 (2012).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Nahrgang, J. et al. Gender specific reproductive strategies of an Arctic key species (Boreogadus saida) and implications of climate change. PLoS ONE 9, e98452 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Huserbråten, M. B. O., Eriksen, E., Gjøsæter, H. & Vikebø, F. Polar cod in jeopardy under the retreating Arctic sea ice. Commun. Biol. 2, 1–8 (2019).

    Article 

    Google Scholar 

  • 36.

    Nahrgang, J. et al. Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil. Environ. Pollut. 218, 605–614 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Laurel, B. J. et al. Embryonic crude oil exposure impairs growth and lipid allocation in a keystone arctic forage fish. iScience 19, 1101–1113 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Politis, S. N. et al. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae. PLoS ONE 12, e0182726 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    O’Dea, R. E., Lagisz, M., Hendry, A. P. & Nakagawa, S. Developmental temperature affects phenotypic means and variability: a meta-analysis of fish data. Fish Fish. 20, 1005–1022 (2019).

    Article 

    Google Scholar 

  • 40.

    Réalis-Doyelle, E., Pasquet, A., De Charleroy, D., Fontaine, P. & Teletchea, F. Strong effects of temperature on the early life stages of a cold stenothermal fish species, brown trout (Salmo trutta L.). PLoS ONE 11, e0155487 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Réalis-Doyelle, E., Pasquet, A., Fontaine, P. & Teletchea, F. How climate change may affect the early life stages of one of the most common freshwater fish species worldwide: the common carp (Cyprinus carpio). Hydrobiologia 805, 365–375 (2018).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Hicken, C. E. et al. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc. Natl. Acad. Sci. 108, 7086–7090 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Carls, M. G., Rice, S. D. & Hose, J. E. Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ. Toxicol. Chem. 18, 481–493 (1999).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Incardona, J. P. Molecular mechanisms of crude oil developmental toxicity in fish. Arch. Environ. Contam. Toxicol. 73, 19–32 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Sørhus, E. et al. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. Elife 6, e20707 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Incardona, J. P. & Scholz, N. L. The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat. Toxicol. 177, 515–525 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Perrichon, P. et al. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi–mahi, Coryphaena hippurus. PLoS ONE 13, e0203949 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Pasparakis, C. et al. Combined effects of oil exposure, temperature and ultraviolet radiation on buoyancy and oxygen consumption of embryonic mahi–mahi, Coryphaena hippurus. Aquat. Toxicol. 191, 113–121 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Pasparakis, C., Mager, E. M., Stieglitz, J. D., Benetti, D. & Grosell, M. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi–mahi (Coryphaena hippurus). Aquat. Toxicol. 181, 113–123 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).

    ADS 
    Article 

    Google Scholar 

  • 51.

    McNicholl, D. G., Davoren, G. K., Majewski, A. R. & Reist, J. D. Isotopic niche overlap between co-occurring capelin (Mallotus villosus) and polar cod (Boreogadus saida) and the effect of lipid extraction on stable isotope ratios. Polar Biol. 41, 423–432 (2018).

    Article 

    Google Scholar 

  • 52.

    Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Bouchard, C. & Fortier, L. Circum-arctic comparison of the hatching season of polar cod Boreogadus saida: a test of the freshwater winter refuge hypothesis. Prog. Oceanogr. 90, 105–116 (2011).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Laurel, B. J., Spencer, M., Iseri, P. & Copeman, L. A. Temperature-dependent growth and behavior of juvenile Arctic cod (Boreogadus saida) and co-occurring North Pacific gadids. Polar Biol. 39, 1127–1135 (2016).

    Article 

    Google Scholar 

  • 55.

    Drost, H. E. et al. Upper thermal limits of the hearts of Arctic cod Boreogadus saida : adults compared with larvae: boreogadus saida thermal limits. J. Fish Biol. 88, 718–726 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Bender, M. L. et al. Effects of chronic dietary petroleum exposure on reproductive development in polar cod (Boreogadus saida). Aquat. Toxicol. 180, 196–208 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Bender, M. L. et al. Effects of acute exposure to dispersed oil and burned oil residue on long-term survival, growth, and reproductive development in polar cod (Boreogadus saida). Mar. Environ. Res. 140, 468–477 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Boehm, P. D., Neff, J. M. & Page, D. S. Assessment of polycyclic aromatic hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil spill: 1989–2005. Mar. Pollut. Bull. 54, 339–356 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Sammarco, P. W. et al. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico. Mar. Pollut. Bull. 73, 129–143 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Berenshtein, I. et al. Invisible oil beyond the Deepwater Horizon satellite footprint. Sci. Adv. 6, eaaw8863 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Incardona, J. P. et al. Cardiac arrhythmia is the primary response of embryonic pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ. Sci. Technol. 43, 201–207 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Incardona, J. P. et al. Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. Aquat. Toxicol. Amst. Neth. 142–143, 303–316 (2013).

    Article 
    CAS 

    Google Scholar 

  • 63.

    de Soysa, T. Y. et al. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol. 10, 40 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Incardona, J. P. et al. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci. Rep. 5, 13499 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Heintz, R. A. et al. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar. Ecol. Prog. Ser. 208, 205–216 (2000).

    ADS 
    Article 

    Google Scholar 

  • 66.

    Sorheim, K. R. & Moldestad, M. O. Weathering properties of the Goliat Kobbe and two Goliat Blend of Kobbe and Realgrunnen crude oils. (2008).

  • 67.

    Sørensen, L., Melbye, A. G. & Booth, A. M. Oil droplet interaction with suspended sediment in the seawater column: influence of physical parameters and chemical dispersants. Mar. Pollut. Bull. 78, 146–152 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 68.

    Sørensen, L. et al. Accumulation and toxicity of monoaromatic petroleum hydrocarbons in early life stages of cod and haddock. Environ. Pollut. 251, 212–220 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Meador, J. P. & Nahrgang, J. Characterizing crude oil toxicity to early-life stage fish based on a complex mixture: Are we making unsupported assumptions?. Environ. Sci. Technol. 53, 11080–11092 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Sørensen, L. et al. Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod. PLoS ONE 12, e0180048 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 71.

    Carls, M. G. et al. Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat. Toxicol. 88, 121–127 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Hansen, B. H. et al. Developmental effects in fish embryos exposed to oil dispersions—the impact of crude oil micro-droplets. Mar. Environ. Res. 150, 104753 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Olsvik, P. A., Berntssen, M. H. G., Hylland, K., Eriksen, D. Ø. & Holen, E. Low impact of exposure to environmentally relevant doses of 226Ra in Atlantic cod (Gadus morhua) embryonic cells. J. Environ. Radioact. 109, 84–93 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 74.

    Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Spencer, M. L., Vestfals, C. D., Mueter, F. J. & Laurel, B. J. Ontogenetic changes in the buoyancy and salinity tolerance of eggs and larvae of polar cod (Boreogadus saida) and other gadids. Polar Biol. 18, 1141–1158. https://doi.org/10.1007/s00300-020-02620-7 (2020).

    Article 

    Google Scholar 

  • 76.

    Pasparakis, C., Wang, Y., Stieglitz, J. D., Benetti, D. D. & Grosell, M. Embryonic buoyancy control as a mechanism of ultraviolet radiation avoidance. Sci. Total Environ. 651, 3070–3078 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Kent, D., Drost, H. E., Fisher, J., Oyama, T. & Farrell, A. P. Laboratory rearing of wild Arctic cod Boreogadus saida from egg to adulthood: rearing boreogadus saida from egg to adulthood. J. Fish Biol. 88, 1241–1248 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7–24 (2006).

    Article 

    Google Scholar 

  • 79.

    Porter, S. M. & Bailey, K. M. The effect of early and late hatching on the escape response of walleye pollock (Theragra chalcogramma) larvae. J. Plankton Res. 29, 291–300 (2007).

    Article 

    Google Scholar 

  • 80.

    Spicer, J. I., Tills, O., Truebano, M. & Rundle, S. D. Developmental plasticity and heterokairy. In Development and Environment (eds Burggren, W. & Dubansky, B.) 73–96 (Springer, 2018). https://doi.org/10.1007/978-3-319-75935-7_4.

    Google Scholar 

  • 81.

    Bouchard, C. et al. Climate warming enhances polar cod recruitment, at least transiently. Prog. Oceanogr. 156, 121–129 (2017).

    Article 

    Google Scholar 

  • 82.

    Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).

    Article 

    Google Scholar 

  • 83.

    Bouchard, C. & Fortier, L. The importance of Calanus glacialis for the feeding success of young polar cod: a circumpolar synthesis. Polar Biol. https://doi.org/10.1007/s00300-020-02643-0 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Balazy, K., Trudnowska, E., Wichorowski, M. & Błachowiak-Samołyk, K. Large versus small zooplankton in relation to temperature in the Arctic shelf region. Polar Res. 37, 1427409 (2018).

    Article 

    Google Scholar 

  • 85.

    Weydmann, A. et al. Shift towards the dominance of boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar. Ecol. Prog. Ser. 501, 41–52 (2014).

    ADS 
    Article 

    Google Scholar 

  • 86.

    Marsh, J. M., Mueter, F. J. & Quinn, T. J. Environmental and biological influences on the distribution and population dynamics of polar cod (Boreogadus saida) in the US Chukchi Sea. Polar Biol. https://doi.org/10.1007/s00300-019-02561-w (2019).

    Article 

    Google Scholar 

  • 87.

    Lange, R. & Marshall, D. Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects. Sci. Rep. 7, 6281 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 88.

    Liess, M., Foit, K., Knillmann, S., Schäfer, R. B. & Liess, H.-D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).

    Article 
    CAS 

    Google Scholar 

  • 90.

    Holst, J. C. & McDonald, A. FISH-LIFT: a device for sampling live fish with trawls. Fish. Res. 48, 87–91 (2000).

    Article 

    Google Scholar 

  • 91.

    Hall, T. E., Smith, P. & Johnston, I. A. Stages of embryonic development in the Atlantic cod Gadus morhua. J. Morphol. 259, 255–270 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 92.

    Houde, E. D. Mortality. In Fishery Science (ed. Fuiman, L. A.) (Wiley, 1989).

    Google Scholar 

  • 93.

    Sørensen, L., Silva, M. S., Booth, A. M. & Meier, S. Optimization and comparison of miniaturized extraction techniques for PAHs from crude oil exposed Atlantic cod and haddock eggs. Anal. Bioanal. Chem. 408, 1023–1032 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 94.

    Sørensen, L., Meier, S. & Mjøs, S. A. Application of gas chromatography/tandem mass spectrometry to determine a wide range of petrogenic alkylated polycyclic aromatic hydrocarbons in biotic samples. Rapid Commun. Mass Spectrom. 30, 2052–2058 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 95.

    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45e–445 (2001).

    Article 

    Google Scholar 

  • 96.

    Riley, P. & Skirrow, G. Chemical Oceanography 56–74 (Academic Press, 1975).

    Google Scholar 

  • 97.

    Laurel, B. J., Copeman, L. A., Hurst, T. P. & Parrish, C. C. The ecological significance of lipid/fatty acid synthesis in developing eggs and newly hatched larvae of Pacific cod (Gadus macrocephalus). Mar. Biol. 157, 1713–1724 (2010).

    CAS 
    Article 

    Google Scholar 

  • 98.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Wassenberg, D. M. & Di Giulio, R. T. Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ. Health Perspect. 112, 1658–1664 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, version 2018). https://www.R-project.org/.

  • 101.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Van Willigen, B. nlme: Linear and Nonlinear Mixed Effects Models. (2020).

  • 102.

    Pinheiro, J. & Bates, D. Fitting linear mixed-effects models. In Mixed-Effects Models in S and S-Plus 133–199 (Springer, 2000).

  • 103.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    Google Scholar 

  • 104.

    Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).

    ADS 
    Article 

    Google Scholar 

  • 105.

    Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond “p < 0.05”. Am. Stat. 73, 1–19 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • 106.

    Amrheim, V., Greenland, S. & McShane, B. Time to retire statistical significance Nature2019.pdf. Nature 567, 305–307 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum

    Olfactory signals and fertility in olive baboons