in

Complex population structure of the Atlantic puffin revealed by whole genome analyses

[adace-ad id="91168"]
  • 1.

    Otero, X. L., De La Peña-Lastra, S., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 2.

    Velarde, E., Anderson, D. W. & Ezcurra, E. Seabird clues to ecosystem health. Science 365, 116–117 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Piatt, J. F., Sydeman, W. J. & Wiese, F. Introduction: a modern role for seabirds as indicators. Mar. Ecol. Prog. Ser. 352, 199–204 (2007).

    Article 

    Google Scholar 

  • 4.

    Boersma, P. D., Clark, J. A. & Hillgarth, N. Seabird conservation. In Biology of Marine Birds (eds. Schreiber, E. & Burger, J.) 559–579 (CRC Press Boca Raton, 2002).

  • 5.

    Denlinger, L. & Wohl, K. Seabird harvest regimes in the circumpolar nations. Conservation of Arctic Flora and Fauna (CAFF), (2001).

  • 6.

    Merkel, F. & Barry, T. Seabird Harvest in the Arctic. Conservation of Arctic Flora and Fauna (CAFF), (2008).

  • 7.

    Croxall, J. P. et al. Seabird conservation status, threats and priority actions: a global assessment. Bird. Conserv. Int. 22, 1–34 (2012).

    Article 

    Google Scholar 

  • 8.

    Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950-2010. PLoS ONE 10, e0129342 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Frederiksen, M. Seabirds in the North East Atlantic. Summary of status, trends and anthropogenic impact. TemaNord 587, 21–24 (2010).

    Google Scholar 

  • 10.

    Chardine, J. & Mendenhall, V. Human Disturbance at Arctic Seabird Colonies. Conservation of Arctic Flora and Fauna (CAFF), (1998).

  • 11.

    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Fraser, D. J. & Bernatchez, L. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol. Ecol. 10, 2741–2752 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Friesen, V. L. Speciation in seabirds: why are there so many species… and why aren’t there more? J. Ornithol. 156, 27–39 (2015).

    Article 

    Google Scholar 

  • 16.

    Taylor, R. S. et al. Sympatric population divergence within a highly pelagic seabird species complex (Hydrobates spp.). J. Avian Biol. 49, 1–14 (2018).

    Article 

    Google Scholar 

  • 17.

    Rexer‐Huber, K. et al. Genomics detects population structure within and between ocean basins in a circumpolar seabird: the white‐chinned petrel. Mol. Ecol. 28, 4552–4572 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Clucas, G. V. et al. Comparative population genomics reveals key barriers to dispersal in Southern Ocean penguins. Mol. Ecol. 27, 4680–4697 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Frugone, M. J. et al. More than the eye can see: Genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Mol. Phylogenet. Evol. 139, 106563 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Cristofari, R. et al. Unexpected population fragmentation in an endangered seabird: the case of the Peruvian diving-petrel. Sci. Rep. 9, 2021 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Tigano, A., Shultz, A. J., Edwards, S. V., Robertson, G. J. & Friesen, V. L. Outlier analyses to test for local adaptation to breeding grounds in a migratory arctic seabird. Ecol. Evol. 7, 2370–2381 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Lowry, D. B. et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol. Ecol. Resour. 17, 142–152 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Somvichian-Clausen, A. Behind the stunning photo of a puffin gorging on fish. Natl Geographic (2017).

  • 24.

    Huijbens, E. H. & Einarsson, N. Feasting on Friends: Whales, Puffins, and Tourism in Iceland. In Tourism Experiences and Animal Consumption (ed. Kline, C.) 10–27 (Routledge, 2018).

  • 25.

    Lund, K. A., Kjartansdóttir, K. & Loftsdóttir, K. ‘Puffin love’: performing and creating Arctic landscapes in Iceland through souvenirs. Tour. Stud. 18, 142–158 (2018).

    Article 

    Google Scholar 

  • 26.

    Hodgetts, L. M. Animal bones and human society in the late younger stone age of arctic Norway. (Durham University, 1999).

  • 27.

    Dove, C. J. & Wickler, S. Identification of bird species used to make a Viking age feather pillow. Arctic 69, 29–36 (2016).

    Article 

    Google Scholar 

  • 28.

    Harris, M. P. & Wanless, S. The puffin (T & AD Poyser, Bloomsbury Publishing, 2011).

  • 29.

    BirdLife International. Fratercula arctica. The IUCN Red List of Threatened Species 2017 (2017)

  • 30.

    Anker-Nilssen, T. & Aarvak, T. The population ecology of puffins at Røst. Status after the breeding season 2001. NINA Oppdragsmeld. 736, 1–40 (2002).

    Google Scholar 

  • 31.

    Anker-Nilssen, T. et al. Key-site monitoring in Norway 2019, including Svalbard and Jan Mayen. SEAPOP Short Report 1–2020 (2020).

  • 32.

    Lilliendahl, K. et al. Recruitment failure of Atlantic puffins Fratercula arctica and sandeels Ammodytes marinus in Vestmannaeyjar Islands. N.áttúrufræðingurinn 83, 65–79 (2013).

    Google Scholar 

  • 33.

    Walker, S. J. & Meijer, H. J. M. Size variation in mid-Holocene North Atlantic Puffins indicates a dynamic response to climate change. PLoS ONE 16, e0246888 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Burnham, K. K., Burnham, J. L. & Johnson, J. A. Morphological measurements of Atlantic puffin (Fratercula arctica naumanni) in High-Arctic Greenland. Polar Res39. https://doi.org/10.33265/polar.v39.5242 (2020).

  • 35.

    Gaston, A. J. & Provencher, J. F. A specimen of the high arctic subspecies of Atlantic Puffin, Fratercula arctica naumanni, in Canada. Can. Field-Nat. 126, 50–54 (2012).

    Article 

    Google Scholar 

  • 36.

    Salomonsen, F. The Atlantic Alcidae. vol. 6 (Elanders boktryckeri aktiebolag, 1944).

  • 37.

    Moen, S. M. Morphologic and genetic variation among breeding colonies of the Atlantic puffin (Fratercula arctica). Auk 108, 755–763 (1991).

    Google Scholar 

  • 38.

    Harris, M. P. Measurements and weights of British Puffins. Bird. Study 26, 179–186 (1979).

    Article 

    Google Scholar 

  • 39.

    Kim, J. A., Kang, S.-G., Yang, J. W., Hur, W.-H. & Kil, H.-J. Complete mitochondrial genome of Aethia cristatella (Charadriiformes: Alcidae). Mitochondrial DNA Part B 5, 31–32 (2020).

    Article 

    Google Scholar 

  • 40.

    Eo, S. H. & An, J. The complete mitochondrial genome sequence of Japanese murrelet (Aves: Alcidae) and its phylogenetic position in Charadriiformes. Mitochondrial DNA A DNA Mapp. Seq. Anal. 27, 4574–4575 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Sánchez-Barreiro, F. et al. Historical Population Declines Prompted Significant Genomic Erosion in the Northern and Southern White Rhinoceros (Ceratotherium Simum). Molecular Ecology. 1–15 https://doi.org/10.1111/mec.16043 (2021).

  • 43.

    Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94–100 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Lombal, A. J., O’dwyer, J. E., Friesen, V., Woehler, E. J. & Burridge, C. P. Identifying mechanisms of genetic differentiation among populations in vagile species: historical factors dominate genetic differentiation in seabirds. Biol. Rev. Camb. Philos. Soc. 95, 625–651 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 45.

    Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16, 1765–1785 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Breton, A. R., Diamond, A. W. & Kress, S. W. Encounter, survival, and movement probabilities from an Atlantic puffin (Fratercula arctica) metapopulation. Ecol. Monogr. 75, 133–149 (2006).

  • 47.

    Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871–3878.e3 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Burg, T. M. & Croxall, J. P. Global relationships amongst black-browed and grey-headed albatrosses: analysis of population structure using mitochondrial DNA and microsatellites. Mol. Ecol. 10, 2647–2660 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Lowther, P. E., Diamond, T., Kress, S. W., Robertson, G. J. & Gill, F. Atlantic Puffin (Fratercula arctica). The Birds of North America Online 18, (2002).

  • 50.

    Wojczulanis-Jakubas, K. et al. Weak population genetic differentiation in the most numerous Arctic seabird, the little auk. Polar Biol. 37, 621–630 (2014).

    Article 

    Google Scholar 

  • 51.

    Smith, A. L., Monteiro, L., Hasegawa, O. & Friesen, V. L. Global phylogeography of the band-rumped storm-petrel (Oceanodroma castro; Procellariiformes: Hydrobatidae). Mol. Phylogenet. Evol. 43, 755–773 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gottinger Stud. 3, 595–708 (1847).

    Google Scholar 

  • 53.

    James, F. C. Geographic size variation in birds and its relationship to climate. Ecology 51, 365–390 (1970).

    Article 

    Google Scholar 

  • 54.

    Yamamoto, T. et al. Geographical variation in body size of a pelagic seabird, the streaked shearwater Calonectris leucomelas. J. Biogeogr. 43, 801–808 (2016).

    Article 

    Google Scholar 

  • 55.

    Barrett, R. T., Anker-Nilssen, T. & Krasnov, Y. V. Can Norwegian and Russian razorbills (Alca torda) be identified by their measurements? Mar. Ornithol. 25, 5–8 (1997).

    Google Scholar 

  • 56.

    Anker-Nilssen, T., Aarvak, T. & Bangjord, G. Mass mortality of Atlantic Puffins Fratercula arctica off Central Norway, spring 2002: causes and consequences. Atl. Seab. 5, 57–72 (2003).

    Google Scholar 

  • 57.

    Pearce, R. L. et al. Mitochondrial DNA suggests high gene flow in ancient murrelets. Condor 104, 84–91 (2002).

    Article 

    Google Scholar 

  • 58.

    Thomas, J. E. et al. Demographic reconstruction from ancient DNA supports rapid extinction of the great auk. eLife 8, e47509 (2019).

  • 59.

    Milot, E., Weimerskirch, H. & Bernatchez, L. The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol. Ecol. 17, 1658–1673 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Edwards, S. & Bensch, S. Looking forwards or looking backwards in avian phylogeography? A comment on Zink and Barrowclough 2008. Mol. Ecol. 18, 2930–2936 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    IPCC. Global Warming of 1.5 °C—Summary for Policy Makers. (2018).

  • 62.

    Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Bernt, M. et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Schubert, M. et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 9, 1056–1082 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinforma. 43, 11.10.1–33 (2013).

    Article 

    Google Scholar 

  • 67.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Matschiner, M. Fitchi: haplotype genealogy graphs based on the Fitch algorithm. Bioinformatics 32, 1250–1252 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Watterson, G. A. Heterosis or neutrality? Genetics 85, 789–814 (1977).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Chakraborty, R. & Mitochondrial, D. N. A. polymorphism reveals hidden heterogeneity within some Asian populations. Am. J. Hum. Genet. 47, 87–94 (1990).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinforma. 15, 356 (2014).

    Article 

    Google Scholar 

  • 77.

    Orlando, L. & Librado, P. Origin and evolution of deleterious mutations in horses. Genes 10, 649 (2019).

  • 78.

    Meisner, J. & Albrechtsen, A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Skotte, L., Korneliussen, T. S. & Albrechtsen, A. Estimating individual admixture proportions from next generation sequencing data. Genetics 195, 693–702 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • 84.

    Lichstein, J. W. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).

    Article 

    Google Scholar 

  • 85.

    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Pante, E., Simon-Bouhet, B. & Irisson, J.-O. marmap—R package. (2019).

  • 87.

    Goslee, S. & Urban, D. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw., Artic. 22, 1–19 (2007).

    Google Scholar 

  • 88.

    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).

    Article 

    Google Scholar 

  • 89.

    Blanchet, F. G., Legendre, P. & Borcard, D. Modelling directional spatial processes in ecological data. Ecol. Modell. 215, 325–336 (2008).

    Article 

    Google Scholar 

  • 90.

    Benestan, L. M. et al. Population genomics and history of speciation reveal fishery management gaps in two related redfish species (Sebastes mentella and Sebastes fasciatus). Evol. Appl. 14, 588–606 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 91.

    Soraggi, S., Wiuf, C. & Albrechtsen, A. Powerful inference with the D-statistic on low-coverage whole-genome data. G3 8, 551–566 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 92.

    Kersten, O. Code for Population Genomics Analyses of Atlantic Puffin (Fratercula arctica) using Whole Genome Sequencing (Version v1.0). Zenodo. https://doi.org/10.5281/zenodo.4899575 (2021).


  • Source: Ecology - nature.com

    A new way to detect the SARS-CoV-2 Alpha variant in wastewater

    Inaugural fund supports early-stage collaborations between MIT and Jordan