in

Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia

[adace-ad id="91168"]
  • 1.

    Liu, M. et al. Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China. Theoret. Appl. Climatol. 119, 203–219. https://doi.org/10.1007/s00704-014-1092-4 (2014).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911. https://doi.org/10.1038/ncomms7911 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Zheng, Z. et al. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 194–202. https://doi.org/10.1016/j.agrformet.2016.04.012 (2016).

    ADS 
    Article 

    Google Scholar 

  • 4.

    Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation?. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2020.108077 (2020).

    Article 

    Google Scholar 

  • 5.

    Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. U. S. A. 110, 4309–4314. https://doi.org/10.1073/pnas.1210423110 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Zhu, Z. C. et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 6, 791–795. https://doi.org/10.1038/nclimate3004 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Sun, Q., Li, B., Zhou, G., Jiang, Y. & Yuan, Y. Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 284, 1. https://doi.org/10.1016/j.agrformet.2019.107896 (2020).

    Article 

    Google Scholar 

  • 8.

    Gao, Q. et al. Climatic change controls productivity variation in global grasslands. Sci. Rep. 6, 26958. https://doi.org/10.1038/srep26958 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956. https://doi.org/10.1038/srep15956 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Li, Z., Chen, Y., Wang, Y. & Fang, G. Dynamic changes in terrestrial net primary production and their effects on evapotranspiration. Hydrol. Earth Syst. Sci. 20, 2169–2178. https://doi.org/10.5194/hess-20-2169-2016 (2016).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biol. 17, 2385–2399. https://doi.org/10.1111/j.1365-2486.2011.02397.x (2011).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Wang, Y., Gao, Q., Liu, T., Tian, Y. & Yu, M. The greenness of major shrublands in china increased from 2001 to 2013. Remote Sens. https://doi.org/10.3390/rs8020121 (2016).

    Article 

    Google Scholar 

  • 13.

    Xu, X. et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob. Change Biol. 21, 3846–3853. https://doi.org/10.1111/gcb.12940 (2015).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Gang, C. et al. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecol. Ind. 67, 788–797. https://doi.org/10.1016/j.ecolind.2016.03.049 (2016).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Yao, J., Yang, Q., Mao, W., Zhao, Y. & Xu, X. Precipitation trend–Elevation relationship in arid regions of the China. Glob. Planet. Change 143, 1–9. https://doi.org/10.1016/j.gloplacha.2016.05.007 (2016).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Yuan, X. et al. Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci. Rep. 7, 3287. https://doi.org/10.1038/s41598-017-03432-2 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695. https://doi.org/10.1038/s41558-020-0781-5 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Li, Y. et al. Evaluation and projection of snowfall changes in High Mountain Asia based on NASA’s NEX-GDDP high-resolution daily downscaled dataset. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aba926 (2020).

    Article 

    Google Scholar 

  • 19.

    Yao, T. et al. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bull. Chin. Acad. Sci. 32, 976–984. https://doi.org/10.16418/j.issn.1000-3045.2017.09.007 (2017).

    Article 

    Google Scholar 

  • 20.

    Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654. https://doi.org/10.1038/s41586-019-1240-1 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    He, Z. et al. Assessing temperature sensitivity of subalpine shrub phenology in semi-arid mountain regions of China. Agric. For. Meteorol. 213, 42–52. https://doi.org/10.1016/j.agrformet.2015.06.013 (2015).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Zhou, J. et al. Alpine vegetation phenology dynamic over 16years and its covariation with climate in a semi-arid region of China. Sci. Total Environ. 572, 119–128. https://doi.org/10.1016/j.scitotenv.2016.07.206 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Zhao, J. et al. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107761 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Deng, H., Pepin, N. C. & Chen, Y. Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 7323–7341. https://doi.org/10.1002/2017jd026524 (2017).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Yao, T. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci. Bull. 64, 1. https://doi.org/10.1016/j.scib.2019.03.033 (2019).

    Article 

    Google Scholar 

  • 26.

    Shen, M. et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Change Biol. 22, 3057–3066. https://doi.org/10.1111/gcb.13301 (2016).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Xu, M. & Xue, X. A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 33, 2071–2083. https://doi.org/10.5846/stxb201112201935 (2013).

    Article 

    Google Scholar 

  • 29.

    Huang, N., He, J. S., Chen, L. & Wang, L. No upward shift of alpine grassland distribution on the Qinghai-Tibetan Plateau despite rapid climate warming from 2000 to 2014. Sci. Total Environ. 625, 1361–1368. https://doi.org/10.1016/j.scitotenv.2018.01.034 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018. https://doi.org/10.1038/ncomms6018 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 1. https://doi.org/10.1038/s41559-019-0838-x (2019).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Liu, H., Zhang, M., Lin, Z. & Xu, X. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agric. For. Meteorol. 256–257, 10–21. https://doi.org/10.1016/j.agrformet.2018.02.015 (2018).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Chen, Z., Wang, W. & Fu, J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 10, 830. https://doi.org/10.1038/s41598-020-57910-1 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Guo, H. et al. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 564, 1165–1178. https://doi.org/10.1016/j.jhydrol.2018.07.081 (2018).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Li, P., Hu, Z. & Liu, Y. Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2020.107950 (2020).

    Article 

    Google Scholar 

  • 36.

    Liu, Z., Li, C., Zhou, P. & Chen, X. A probabilistic assessment of the likelihood of vegetation drought under varying climate conditions across China. Sci. Rep. 6, 35105. https://doi.org/10.1038/srep35105 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Gao, Q.-Z., Li, Y., Xu, H.-M., Wan, Y.-F. & Jiangcun, W.-Z. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. Mitig. Adapt. Strat. Glob. Change 19, 199–209. https://doi.org/10.1007/s11027-012-9434-y (2012).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Guo, Y. & Wang, C. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades. J. Hydrol. 517, 826–835. https://doi.org/10.1016/j.jhydrol.2014.06.006 (2014).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196. https://doi.org/10.1038/ncomms14196 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Yao, J. et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China. J. Hydrol. 585, 1. https://doi.org/10.1016/j.jhydrol.2020.124823 (2020).

    Article 

    Google Scholar 

  • 41.

    Sun, A. et al. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia. Sci. Total Environ. 712, 135632. https://doi.org/10.1016/j.scitotenv.2019.135632 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Brun, F., Berthier, E., Wagnon, P., Kaab, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat. Geosci. 10, 668–673. https://doi.org/10.1038/NGEO2999 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Luo, D., Liu, L., Jin, H., Wang, X. & Chen, F. Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeastern Tibetan Plateau. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107819 (2020).

    Article 

    Google Scholar 

  • 44.

    Che, M. et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 189–190, 81–90. https://doi.org/10.1016/j.agrformet.2014.01.004 (2014).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Ji, Z. et al. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990–2009 using a regional climate model. Atmos. Res. 178–179, 484–496. https://doi.org/10.1016/j.atmosres.2016.05.003 (2016).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Wang, X. et al. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. U. S. A. 108, 1240–1245. https://doi.org/10.1073/pnas.1014425108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Piao, S. et al. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin. Sci. Bull. 64, 2842–2855. https://doi.org/10.1360/TB-2019-0074 (2019).

    Article 

    Google Scholar 

  • 48.

    Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436. https://doi.org/10.1038/nclimate3299 (2017).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Xu, H. J., Wang, X. P. & Yang, T. B. Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982–2013. Sci. Total Environ. 579, 1658–1674. https://doi.org/10.1016/j.scitotenv.2016.11.182 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 50.

    Zhang, Y. et al. Satellite-observed global terrestrial vegetation production in response to water availability. Remote Sens. 13, 1. https://doi.org/10.3390/rs13071289 (2021).

    Article 

    Google Scholar 

  • 51.

    Curio, J. & Scherer, D. Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau. Earth Syst. Dyn. Discus. https://doi.org/10.5194/esd-2016-1,10.5194/esd-2016-1 (2016).

    Article 

    Google Scholar 

  • 52.

    Li, J., Sun, C. & Jin, F. F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett. 40, 5497–5502. https://doi.org/10.1002/2013gl057877 (2013).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2, 587–595. https://doi.org/10.1038/nclimate1495 (2012).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Crimmins, T. M., Crimmins, M. A. & DavidBertelsen, C. Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J. Ecol. 98, 1042–1051. https://doi.org/10.1111/j.1365-2745.2010.01696.x (2010).

    Article 

    Google Scholar 

  • 55.

    Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77. https://doi.org/10.1016/j.agrformet.2019.02.008 (2019).

    ADS 
    Article 

    Google Scholar 

  • 56.

    Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150. https://doi.org/10.1007/s00382-015-2636-8 (2015).

    Article 

    Google Scholar 

  • 57.

    Sun, J., Qin, X. & Yang, J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ. Monit. Assess. 188, 20. https://doi.org/10.1007/s10661-015-5014-4 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 58.

    Ganjurjav, H. et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 233–240. https://doi.org/10.1016/j.agrformet.2016.03.017 (2016).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Xu, M. et al. Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environ. Exp. Bot. 109, 54–62. https://doi.org/10.1016/j.envexpbot.2014.07.012 (2015).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Xie, J. et al. Land surface phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 725, 138380. https://doi.org/10.1016/j.scitotenv.2020.138380 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Zhang, Y. et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 563–564, 210–220. https://doi.org/10.1016/j.scitotenv.2016.03.223 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Liu, L. et al. Elevation-dependent decline in vegetation greening rate driven by increasing dryness based on three satellite NDVI datasets on the Tibetan Plateau. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2019.105569 (2019).

    Article 

    Google Scholar 

  • 63.

    Piao, S. et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 151, 1599–1608. https://doi.org/10.1016/j.agrformet.2011.06.016 (2011).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. https://doi.org/10.1029/2007gl031447 (2007).

    Article 

    Google Scholar 

  • 65.

    Gao, Y. et al. Vegetation net primary productivity and its response to climate change during 2001–2008 in the Tibetan Plateau. Sci. Total Environ. 444, 356–362. https://doi.org/10.1016/j.scitotenv.2012.12.014 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Shen, M. et al. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 151, 1711–1722. https://doi.org/10.1016/j.agrformet.2011.07.003 (2011).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Chen, N. et al. The compensation effects of post-drought regrowth on earlier drought loss across the tibetan plateau grasslands. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2019.107822 (2020).

    Article 

    Google Scholar 

  • 68.

    Zhao, W. et al. Contributions of climatic factors to interannual variability of the vegetation index in Northern China Grasslands. J. Clim. 33, 175–183. https://doi.org/10.1175/jcli-d-18-0587.1 (2020).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Liang, J. et al. Where will threatened migratory birds go under climate change? Implications for China’s national nature reserves. Sci. Total Environ. 645, 1040–1047. https://doi.org/10.1016/j.scitotenv.2018.07.196 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 70.

    Qu, S. et al. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors?. Ecol. Ind. 90, 438–450. https://doi.org/10.1016/j.ecolind.2018.03.029 (2018).

    Article 

    Google Scholar 

  • 71.

    Yin, L. et al. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity?. Ecol. Ind. 112, 106013. https://doi.org/10.1016/j.ecolind.2019.106013 (2020).

    Article 

    Google Scholar 

  • 72.

    Zhou, X., Yamaguchi, Y. & Arjasakusuma, S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Sci. Total Environ. 616–617, 730–743. https://doi.org/10.1016/j.scitotenv.2017.10.253 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 73.

    Li, Y. et al. The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau. J. Environ. Manag. 128, 393–399. https://doi.org/10.1016/j.jenvman.2013.05.058 (2013).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Liu, X. et al. How does grazing exclusion influence plant productivity and community structure in alpine grasslands of the Qinghai-Tibetan Plateau?. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2020.e01066 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Li, W. et al. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai-Tibetan Plateau. Ecol. Eng. 98, 123–133. https://doi.org/10.1016/j.ecoleng.2016.10.026 (2017).

    Article 

    Google Scholar 

  • 76.

    Deng, L. et al. Effects of grazing exclusion on carbon sequestration in China’s grassland. Earth Sci. Rev. 173, 84–95. https://doi.org/10.1016/j.earscirev.2017.08.008 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 77.

    Yu, L. et al. Effects of grazing exclusion on soil carbon dynamics in alpine grasslands of the Tibetan Plateau. Geoderma 353, 133–143. https://doi.org/10.1016/j.geoderma.2019.06.036 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 78.

    Shao, Q. et al. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geograph. Sci. 27, 183–204. https://doi.org/10.1007/s11442-017-1371-y (2016).

    Article 

    Google Scholar 

  • 79.

    Sun, Q. et al. A systematic review of research studies on the estimation of net primary productivity in the Three-River Headwater Region, China. J. Geograph. Sci. 27, 161–182. https://doi.org/10.1007/s11442-017-1370-z (2016).

    Article 

    Google Scholar 

  • 80.

    Shen, X. et al. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. https://doi.org/10.1029/2020GL087648 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Shen, X. et al. Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China. Sci. China Earth Sci. 64, 1115–1125. https://doi.org/10.1007/s11430-020-9778-7 (2021).

    ADS 
    Article 

    Google Scholar 

  • 82.

    Wang, Y. et al. Spatiotemporal change of aboveground biomass and its response to climate change in marshes of the Tibetan Plateau. Int. J. Appl. Earth Observ. Geoinf. https://doi.org/10.1016/j.jag.2021.102385 (2021).

    Article 

    Google Scholar 

  • 83.

    Jeong, S.-J., Ho, C.-H. & Jeong, J.-H. Increase in vegetation greenness and decrease in springtime warming over east Asia. Geophys. Res. Lett. https://doi.org/10.1029/2008gl036583 (2009).

    Article 

    Google Scholar 

  • 84.

    Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. U. S. A. 112, 9299–9304. https://doi.org/10.1073/pnas.1504418112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Shen, X. et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric. For. Meteorol. 259, 240–249. https://doi.org/10.1016/j.agrformet.2018.05.006 (2018).

    ADS 
    Article 

    Google Scholar 

  • 86.

    Shen, X. et al. Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Sci. Total Environ. 666, 1169–1177. https://doi.org/10.1016/j.scitotenv.2019.02.265 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 87.

    Niittynen, P. et al. Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nat. Clim. Chang. https://doi.org/10.1038/s41558-020-00916-4 (2020).

    Article 

    Google Scholar 

  • 88.

    Wu, D. et al. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sens. 6, 4217–4239. https://doi.org/10.3390/rs6054217 (2014).

    ADS 
    Article 

    Google Scholar 

  • 89.

    Zhang, H. et al. Calculation of evapotranspiration in different climatic zones combining the long-term monitoring data with bootstrap method. Environ. Res. 191, 110200. https://doi.org/10.1016/j.envres.2020.110200 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 90.

    Kalisa, W. et al. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 9, 16865. https://doi.org/10.1038/s41598-019-53150-0 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 91.

    Chen, Y. Geographical data analysis with Matlab 202–220 (Chen, 2012).


  • Source: Ecology - nature.com

    MIT-designed project achieves major advance toward fusion energy

    Historical land use has long-term effects on microbial community assembly processes in forest soils