in

Detecting anchored fish aggregating devices (AFADs) and estimating use patterns from vessel tracking data in small-scale fisheries

[adace-ad id="91168"]

Technological advancements improve our ability to manage natural resources. This is particularly relevant for small scale fisheries, where there is a need for low-cost data sources to improve our understanding of fishing effort, catch, and the associated sustainability of fish resources required for global food security. GPS trackers have now been widely used to study the behaviour of small-scale fisheries25,40. We found focusing on patterns of vessel movement to be a low-cost, reliable approach to identify fishing grounds, as well as to understand both the spatial and temporal usage of AFADs, and ultimately predicting the resulting catch.

We acknowledge that the number of actual AFADs used by our tracked vessels is likely much higher than the number estimated in this study. This is in part due to our requirement for a potential AFAD to have been visited at least two times before we considered it a confirmed AFAD. These criteria significantly reduced the number of AFADs reported (from 139 to 72 AFADs). However, we erred on the cautious side as we were unable to distinguish between AFAD fishing and other non-AFAD fishing behaviours, such as bait fishing, that might involve vessels being stationary. Furthermore, given that the length of trip for a vessel is 5 to 20 days, the one-month period over which a SPOT Trace tracker is deployed means there is a maximum of two fishing trips possible during our observation period. This leads to the potential that even the tracked vessels may have additional AFADs they use outside of the fishing trips observed in this study period.

Another source of underestimation in AFAD numbers may come from the distance parameter we employed in our analysis. During the ground-truthing, only two out of three visited AFADs were detected by DBSCAN. This is because the radius of movement between two of the FADs (Fig. 2) was overlapping. This is possible, as currents and winds displace AFADs synchronously, and thus tangling is reduced, allowing AFADs to be deployed closer together than the sum of their surface radii. Therefore, the distance among vessel positions clustered two AFADs, identifying them as a single AFAD, given the criteria we applied. The implication of this potential for multiple AFADs within a DBSCAN cluster is that the locations we detected could actually represent a much larger number of AFADs that are deployed close together. Future extensions of this work could include estimating the number of AFADs within clusters using the geometric pattern of the boundary of the cluster. For instance, a figure-eight shaped boundary would indicate there are two FADs in a cluster rather than one. However, SPOT Trace deployments would need to be longer to provide adequate data to distinguish this subtlety.

Since our study did not include records from the first time each of the AFADs were deployed, we were unable to determine the absolute lifetime of AFADs in the region. However, based on the vessel tracking data, only a few AFADs were visited for nearly one year implying that AFADs might be failing in less than one year. Because the record of AFAD usage is from the vessel perspective, when the tracker on a vessel is removed at the end of its month long deployment, the record stops while the AFADs may still exist and remain in use. If other vessels in the study use the same AFAD, the record for that AFAD will continue, but if not, it ends with the removal of the tracker from the vessel using it. Hence, the lifespan of AFADs we report is an estimate that should be treated as a minimum lifespan. Moreover, since fishers tend to deploy AFADs in a particular fishing location, it is also possible that the fisher has deployed a new AFAD in the same location. However, given the deployment precision required this may not be as big of a source of error as underestimation.

Conversely, from long periods of inactivity at individual AFADs (as shown in Fig. 4), we suspect that some AFADs may have been lost and replaced over the course of the longer use patterns we observed. These inactivity periods take place during the wet season, which typically has rougher weather and poorer fishing conditions, particularly for small vessels. Hence, we might anticipate fewer vessel days at sea or the loss of AFADs due to failure of their moorings during periods of high swell. The asynchrony in the time at which inactivity patterns begin and end, however, suggests that a lack of fishing activity is unlikely to be the sole source of the observed inactivity periods and that there is likely a contribution from AFAD loss and replacement. With additional tracking data on individual vessels, it might be possible to disentangle these differences by looking for subtle shifts in the centres of the spatial clusters, indicating a new deployment. However, the current observations are inadequate to provide this level of resolution.

The AFAD sharing practices identified in our study reveal a management opportunity to reduce the number of AFADs deployed. The use of AFADs can be maximized by extending the users beyond the owners of an individual AFAD, or by considering AFADs a community resource. While perhaps not suitable in all areas, given that sharing AFAD is relatively widespread, this presents a viable option. Developing a management system that allows limits on the total number of AFADs but provides for a system of rotating access may allow for the establishment of a biologically sustainable system of AFADs whilst minimizing social and economic disruption to the fishers. Moreover, it may also reduce the incentives for fishers to keep AFAD locations private.

The catch data obtained from the port sampling allowed us to identify the factors that influence the total catch. The number of AFADs visited is the main factor that significantly affects the weight of catch by a vessel on a fishing trip, given the average catch of a vessel. Trip success increased as more AFADs were visited, but then declined sharply beyond 3 AFADs. Similarly, for a given vessel, as trip lengths increased, catches were lower.

This pattern might be expected if fishers are considered as central place foragers in the context of the optimal foraging theory41. Vessels typically leave and return to the same port. Presumably while at sea, they attempt to either maximize their catch or at least satisfy a minimum required catch to meet their fixed costs. In either event, one would expect fishers to extend their trip length if catch rates are low to try to meet their objective, subject to other constraints such as fuel supply or adverse weather. In this context, if they visit an AFAD and have a low catch rate, one would expect fishers to move to another AFAD. Thus together, the number of AFADs visited and the length of the trip provide a reliable predictor of the quality of a fishing trip, in terms of variation around the average for a given vessel. This information is very useful, as it suggests that the SPOT Tracking data, or other vessel tracking information, can be used as a proxy for port sampling. Thus, remote monitoring of the vessels can be used to get some measure of stock status, via catch rates, or as a check against port sampling or logbooks to check their veracity. Given the rapidly falling cost of technologies, such as the SPOT trackers used in this study, proxies for catch rates such as the one we developed here could facilitate fleet-wide monitoring. In Indonesia, with a quarter-million small scale vessels spread across thousands of islands this scalability is critical, and given Indonesia has the third highest marine catch in the world42, the resulting management improvements have global ramifications.

The case of Indonesian FAD management challenges reflects current global FAD management challenges, especially in artisanal coastal fisheries in Pacific island countries where AFADs are commonly used43. We found that AFAD deployments in Indonesia are very dense, and frequently well inside the minimum ten nautical miles spacing required by law. Based on our study, it is also clear that vessels are using more than the three AFADs limit allowed in current regulations. These high densities and usage rates could be reducing the effectiveness of AFADs to aggregate the fish by dividing the fish concentration among close AFADs and thus decreasing catch rates. Moreover, the current concentrated use of AFADs could also be leading to large numbers of lost and abandoned AFAD structures, with significant impacts on the ecosystem and local habitats44,45. Fishers could deploy fewer AFADs, thus decreasing their potential impacts. The regulation of AFADs in Indonesia, which has been in place since 2014, is still not effectively enforced due to technical issues. Moreover, the users of this type of FAD are dominated by small-scale fishers whose livelihoods and food supplies likely depend on the additional efficiency, making management more problematic.

Expansion of the current study from a monthly sampling approach to continuous monitoring of vessels would greatly improve our ability to discern AFAD use patterns, infer catch dynamics, and ultimately investigate the potential for management strategies that could balance maximizing the benefits from AFAD deployments and controlling their environmental and social impacts. Ultimately minor technological improvements which extend tracking device lifetimes, along with links to other electronic monitoring approaches such as low-cost onboard cameras or electronic logbooks and landing records could allow cost effective monitoring of the vast small scale fleet in Indonesia, leading to better fishery outcomes at a significantly reduced cost. Expanding these approaches, particularly in the case of rapidly falling technology costs, has significant promise for improving management across the many fisheries and sectors in Indonesia, and elsewhere.

Most of the global FADs are managed by the regional fisheries management organizations (RFMOs), and not all member countries have implemented regulations regarding FAD use46,47 (IOTC, 2018). Given the large proportion of world tuna production which is dominated by floating object fishing, compared to fishing on free schooling tuna48, more investment in FAD management will likely yield an overall improvement in fisheries management and catch sustainability. Paired with addressing management of Indonesia’s very large small scale tuna sector, which lands half the national catch, these regulations could significantly improve sustainability in the Indo-Pacific region.


Source: Ecology - nature.com

MIT-designed project achieves major advance toward fusion energy

Historical land use has long-term effects on microbial community assembly processes in forest soils