in

Diet diversity and environment determine the intestinal microbiome and bacterial pathogen load of fire salamanders

[adace-ad id="91168"]
  • 1.

    Ley, R. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Robinson, C. J., Bohannan, B. J. M. & Young, V. B. From structure to function: The ecology of host-associated microbial communities. Microbiol. Mol. Biol. Rev. 74, 453–476 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Pryor, G. & Bjorndal, K. Symbiotic fermentation, digesta passage, and gastrointestinal morphology in bullfrog tadpoles (Rana catesbeiana). Physiol. Biochem. Zool. 78, 201–215 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Claus, S. P., Guillou, H. & Ellero-Simatos, S. The gut microbiota: A major player in the toxicity of environmental pollutants?. NPJ Biofilms Microbiomes 2, 16003 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation?. Trends Ecol. Evol. 31, 689–699 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Bourguignon, T. et al. Rampant host switching shaped the termite gut microbiome. Curr. Biol. 28, 649-654.e2 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Amato, K. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 1 (2018).

    Google Scholar 

  • 10.

    Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 21, 3363–3378 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Bolnick, D. I. et al. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol. Lett. 17, 979–987 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).

    Article 

    Google Scholar 

  • 13.

    Michel, A. et al. The gut of the finch: Uniqueness of the gut microbiome of the Galápagos vampire finch. Microbiome 6, 1–14 (2018).

    Article 

    Google Scholar 

  • 14.

    Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Kohl, K., Amaya, J., Passement, C., Dearing, M. D. & Mccue, M. Unique and shared responses of the gut microbiota to prolonged fasting: A comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Vences, M. et al. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Sci. Nat. 103, 25 (2016).

    Article 
    CAS 

    Google Scholar 

  • 18.

    Li, G. et al. Host-microbiota interaction helps to explain the bottom-up effects of climate change on a small rodent species. ISME J. 14, 1795–1808 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Rawls, J., Mahowald, M., Ley, R. & Gordon, J. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7, 13699 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Woodhams, D. C. et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 21, 23 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Adlerberth, I. & Wold, A. E. Establishment of the gut microbiota in Western infants. Acta Paediatr. Int. J. Paediatr. 98, 229–238 (2009).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783 (2004).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Lips, K. R. et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc. Natl. Acad. Sci. USA. 103, 3165 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Bishop, P. et al. The amphibian extinction crisis -what will it take to put the action into the amphibian conservation action plan?. Surv. Perspect. Integr. Environ. Soc. 5, 97–111 (2012).

    Google Scholar 

  • 27.

    Kats, L. & Ferrer, R. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).

    Article 

    Google Scholar 

  • 28.

    Chanson, J., Hoffman, M., Cox, N. & Stuart, S. The State of the World’s Amphibians. In Threatened Amphibians of the World 33–44 (Lynx Edicions, Barcelona, Spain, 2015)

  • 29.

    Rollins-Smith, L. A. & Woodhams, D. C. Amphibian immunity: Staying in tune with the environment. In Ecoimmunology ( eds Demas, G. & Nelson, R.) 92–143 (Oxford University press, Oxford, UK, 2011).

  • 30.

    Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Whiles, M. R. et al. The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front. Ecol. Environ. 4, 27–34 (2006).

    Article 

    Google Scholar 

  • 34.

    Hocking, D. & Babbitt, K. Amphibian contributions to ecosystem services. Herpetol. Conserv. Biol. 9, 1–17 (2014).

    Google Scholar 

  • 35.

    Burton, T. M. & Likens, G. E. Energy flow and nutrient cycling in salamander populations in the Hubbard Brook experimental forest, New Hampshire. Ecology 56, 1068–1080 (1975).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Reagan, D. P. & Waide, R. B. The Food Web of a Tropical Rain Forest (University of Chicago Press, 1996).

    Google Scholar 

  • 37.

    Stebbins, R. C. & Cohen, N. W. A Natural History of Amphibians (Princeton University Press, 1997).

    Google Scholar 

  • 38.

    Flecker, A. S., Feifarek, B. P. & Taylor, B. W. Ecosystem engineering by a tropical tadpole: Density-dependent effects on habitat structure and larval growth rates. Copeia 1999, 495–500 (1999).

    Article 

    Google Scholar 

  • 39.

    Beard, K., Vogt, K. & Kulmatiski, A. Top-down effects of a terrestrial frog on nutrient dynamics. Oecologia 133, 583–593 (2002).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Davic, R. & Welsh, H. On the ecological role of salamanders. Annu. Rev. Ecol. Syst. 12, 405–434 (2004).

    Article 

    Google Scholar 

  • 41.

    Reinhardt, T., Steinfartz, S., Paetzold, A. & Weitere, M. Linking the evolution of habitat choice to ecosystem functioning: Direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies. Oecologia 173, 281–291 (2013).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Buckley, D. & Alcobendas, M. Salamandra salamandra (Linnaeus, 1758). (2002).

  • 43.

    Fryxell, J. & Lundberg, P. Diet choice and predator—prey dynamics. Evol. Ecol. 8, 407–421 (1994).

    Article 

    Google Scholar 

  • 44.

    Deagle, B. E. et al. Studying seabird diet through genetic analysis of faeces: A case study on macaroni penguins (Eudyptes chrysolophus). PLoS ONE 2, e831 (2007).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 45.

    Botzler, R. G., Wetzler, T. F. & Cowan, A. B. Yersinia enterocolitica and yersinia-like organisms isolated from frogs and snails. Bull. Wildl. Dis. Assoc. 4, 110–115 (1968).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Cooper, J. E., Needham, J. R. & Griffin, J. A bacterial disease of the Darwin’s frog (Rhinoderma darwini). Lab. Anim. 12, 91–93 (1978).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Hird, D. et al. Enterobacteriacae and Aeromonas hydrophila in Minnesota frogs and tadpoles (Rana papiens). Appl. Environ. Microbiol. 46, 1423–1425 (1984).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Olson, M., Gard, S., Brown, M., Hampton, R. & Morck, D. Flavobacterium indologenes infection in leopard frogs. J. Am. Vet. Med. Assoc. 201, 1766–1770 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Pearson, M. D. Motile Aeromonas septicaemia of farmed Rana spp. (1998).

  • 50.

    Green, S. et al. Identification and management of an outbreak of Flavobacterium meningosepticum infection in a colony of South African clawed frogs (Xenopus laevis). J. Am. Vet. Med. Assoc. 214(1833–8), 1792–1793 (1999).

    Google Scholar 

  • 51.

    Bernardet, J.-F. et al. Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst. Appl. Microbiol. 28, 640–660 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Pasteris, S., Guidoli, M., Otero, M., Bühler, M. & Nader-Macías, M. In vitro inhibition of Citrobacter freundii, a red-leg syndrome associated pathogen in raniculture, by indigenous Lactococcus lactis CRL 1584. Vet. Microbiol. 151, 336–344 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Kirk, K. et al. Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int. J. Syst. Evol. Microbiol. 63, 4777–4783 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Suzina, N. E. et al. Cytophysiological characteristics of the vegetative and dormant cells of Stenotrophomonas sp. strain FM3, a bacterium isolated from the skin of a Xenopus laevis frog. Microbiology 87, 339–349 (2018).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Hallinger, M., Taubert, A. & Hermosilla, C. Endoparasites infecting exotic captive amphibian pet and zoo animals (Anura, Caudata) in Germany. Parasitol. Res. 119, 3659–3673 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Deagle, B. E., Chiaradia, A., McInnes, J. & Jarman, S. N. Pyrosequencing faecal DNA to determine diet of little penguins: Is what goes in what comes out?. Conserv. Genet. 11, 2039–2048 (2010).

    Article 

    Google Scholar 

  • 57.

    Deagle, B. E., Thomas, A. C., Shaffer, A. K., Trites, A. W. & Jarman, S. N. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count?. Mol. Ecol. Resour. 13, 620–633 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Nakahara, F. et al. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3, 200–206 (2015).

    Article 

    Google Scholar 

  • 59.

    Deagle, B., Kirkwood, R. & Jarman, S. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces. Mol. Ecol. 18, 2022–2038 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Thomas, A. C., Jarman, S. N., Haman, K. H., Trites, A. W. & Deagle, B. E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 23, 3706–3718 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Deagle, B. & Tollit, D. Quantitative analysis of prey DNA in pinniped faeces: Potential to estimate diet composition?. Conserv. Genet. 8, 743–747 (2007).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Ando, H. et al. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2, 391–406 (2020).

    Article 

    Google Scholar 

  • 64.

    Deagle, B. et al. Molecular scatology as a tool to study diet: Analysis of prey DNA in scats from captive Steller sea lions. Mol. Ecol. 14, 1831–1842 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Parsons, K., Piertney, S., Middlemas, S., Hammond, P. & Armstrong, J. DNA-based identification of salmonid prey species in seal faeces. J. Zool. 266, 275–281 (2005).

    Article 

    Google Scholar 

  • 66.

    Meekan, M., Jarman, S., McLean, C. & Schultz, M. DNA evidence of whale sharks (Rhincodon typus) feeding on red crab (Gecarcoidea natalis) larvae at Christmas Island, Australia. Mar. Freshw. Res. 60, 607–609 (2009).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Guillerault, N., Bouletreau, S., Iribar, A., Valentini, A. & Santoul, F. Application of DNA metabarcoding on faeces to identify European catfish Silurus glanis diet. J. Fish Biol. 90, 2214–2219 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Brown, D. S., Jarman, S. N. & Symondson, W. O. C. Pyrosequencing of prey DNA in reptile faeces: Analysis of earthworm consumption by slow worms. Mol. Ecol. Resour. 12, 259–266 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Ferenti, S., Cicort-Lucaciu, A. S., Dobre, F., Paina, C. & Covaci, R. The food of four Salamandra salamandra populations from Defileul Jiului National Park (Gorj County). Olten. Stud. Si Comun. Stiintele Nat. 2008, 153–160 (2008).

    Google Scholar 

  • 70.

    Ferenti, S., David, A. & Nagy, D. Feeding-behaviour responses to anthropogenic factors on Salamandra salamandra (Amphibia, Caudata). Biharean Biol. 4, 139–143 (2010).

    Google Scholar 

  • 71.

    Lezău, O. et al. The feeding of two Salamandra salamandra (Linnaeus, 1758) populations from Jiului Gorge National Park (Romania), South West. J. Hortic. Biol. Environ. 1, 143–152 (2010).

    Google Scholar 

  • 72.

    Balogová, M., Maxinová, E., Orendáš, P. & Uhrin, M. Trophic spectrum of adult Salamandra salamandra in the Carpathians with the first note on food intake by the species during winter. Herpetol. Notes 8, 371–377 (2015).

    Google Scholar 

  • 73.

    Sebastiano, S., Antonio, R., Fabrizio, O., Dario, O. & Roberta, M. Different season, different strategies: Feeding ecology of two syntopic forest-dwelling salamanders. Acta Oecologica 43, 42–50 (2012).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Sci. Data 5, 1–7 (2018).

    Article 

    Google Scholar 

  • 75.

    Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders?. PLoS ONE 13, e0205672 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Measey, G. Diet of feral Xenopus laevis (Daudin) in South Wales, UK. J. Zool. 246, 287–298 (1998).

    Article 

    Google Scholar 

  • 77.

    Le, D. T. T., Rowley, J. J., Tran, D. T. A. & Hoang, H. D. The diet of a forest-dependent frog species, Odorrana morafkai (Anura: Ranidae), in relation to habitat disturbance. Amphib. Reptil. 41, 29–41 (2020).

    Article 

    Google Scholar 

  • 78.

    Pamintuan, P. E. & Starr, C. K. Diet of the giant toad, Bufo marinus (Amphibia: Salientia), in a coastal habitat of the Philippines. Trop. AgricTrinidad 93, 323–327 (2016).

    Google Scholar 

  • 79.

    Plummer, M. & Farrar, D. Sexual dietary differences in a population of Trionyx muticus. J. Herpetol. 15, 175–179 (1981).

    Article 

    Google Scholar 

  • 80.

    Shetty, S. & Shine, R. Activity patterns of yellow-lipped sea Kraits (Laticauda colubrina) on a Fijian island. Copeia 2002, 77–85 (2002).

    Article 

    Google Scholar 

  • 81.

    Vincent, S., Herrel, A. & Irschick, D. Sexual dimorphism in head shape and diet in the Cottonmouth Snake (Agkistrodon piscivorus). J. Zool. 264, 53–59 (2004).

    Article 

    Google Scholar 

  • 82.

    Manenti, R., Conti, A. & Pennati, R. Fire salamander (Salamandra salamandra) males’ activity during breeding season: Effects of microhabitat features and body size. Acta Herpetol. 12, 29–36 (2017).

    Google Scholar 

  • 83.

    Keen, W. H. Feeding and activity patterns in the salamander Desmognathus ochrophaeus (Amphibia, Urodela, Plethodontidae). J. Herpetol. 13, 461–467 (1979).

    Article 

    Google Scholar 

  • 84.

    Forester, D. C. Parental care in the salamander Desmognathus ochrophaeus: Female activity pattern and trophic behavior. J. Herpetol. 15, 29–34 (1981).

    Article 

    Google Scholar 

  • 85.

    Harris, W. E. Spermatophore deposition behaviour in an explosive breeder, the Small mouthed salamander, Ambystom texanum. Herpetologica 64, 149–155 (2008).

    Article 

    Google Scholar 

  • 86.

    Anderson, T. & Mathis, A. Diets of two sympatric neotropical salamanders, bolitoglossa mexicana and B. rufescens, with notes on reproduction for B. rufescens. J. Herpetol. 33, 601 (1999).

    Article 

    Google Scholar 

  • 87.

    Shu, Y. et al. Comparison of intestinal microbes in female and male Chinese concave-eared frogs (Odorrana tormota) and effect of nematode infection on gut bacterial communities. MicrobiologyOpen 8, e00749 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 88.

    Zhou, J. et al. A comparison of nonlethal sampling methods for amphibian gut microbiome analyses. Mol. Ecol. Resour. 20, 844–855 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Huang, C. & Liao, W. Seasonal variation in gut microbiota related to diet in Fejervarya limnocharis. Animals 11, 1393 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Chang, C.-W., Huang, B.-H., Lin, S.-M., Huang, C.-L. & Liao, P.-C. Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiol. 16, 33 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 91.

    Kohl, K. D., Cary, T. L., Karasov, W. H. & Dearing, M. D. Restructuring of the amphibian gut microbiota through metamorphosis. Environ. Microbiol. Rep. 5, 899–903 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Colombo, B. M., Scalvenzi, T., Benlamara, S. & Pollet, N. Microbiota and mucosal immunity in amphibians. Front. Immunol. 6, 111–111 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 93.

    Novoslavskij, A. et al. Major foodborne pathogens in fish and fish products: a review. Ann. Microbiol. 66, 1–15 (2015).

    Article 

    Google Scholar 

  • 94.

    Standish, I. et al. Yersinia ruckeri isolated from common mudpuppy necturus maculosus. J. Aquat. Anim. Health 31, 71–74 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Hird, D. W. et al. Enterobacteriaceae and Aeromonas hydrophila in Minnesota frogs and tadpoles (Rana pipiens). Appl. Environ. Microbiol. 46, 1423–1425 (1983).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Heiman, M. L. & Greenway, F. L. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 5, 317–320 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Amato, K. & Righini, N. The howler monkey as a model for exploring host-gut microbiota interactions in primates.https://doi.org/10.1007/978-1-4939-1957-4_9 (2015).

  • 98.

    Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl. Acad. Sci. 116, 23588 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Tiede, J., Scherber, C., Mutschler, J., McMahon, K. D. & Gratton, C. Gut microbiomes of mobile predators vary with landscape context and species identity. Ecol. Evol. 7, 8545–8557 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).

    Article 

    Google Scholar 

  • 101.

    Vences, M. et al. Freshwater vertebrate metabarcoding on Illumina platforms using double-indexed primers of the mitochondrial 16S rRNA gene. Conserv. Genet. Resour. 8, 323–327 (2016).

    Article 

    Google Scholar 

  • 102.

    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 103.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 106.

    Aguirre, A. A. et al. The One Health Approach to toxoplasmosis: Epidemiology, control, and prevention strategies. EcoHealth 16, 378–390 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 107.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 109.

    Vavrek, M. J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 16 (2011).

    Google Scholar 

  • 110.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 112.

    Jaccard, P. The distribution of the flora of the Alpine zone. New Phytol. 11, 37–50 (1912).

    Article 

    Google Scholar 

  • 113.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5. 2019 (2020).

  • 114.

    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Meeting frameworks must be even more inclusive

    Identifying thresholds in the impacts of an invasive groundcover on native vegetation