in

Drivers and implications of distance decay differ for ectomycorrhizal and foliar endophytic fungi across an anciently fragmented landscape

[adace-ad id="91168"]
  • 1.

    Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun. 2018;9:1–11.

    Article 
    CAS 

    Google Scholar 

  • 2.

    Smith SE and Read D. Mycorrhizal symbiosis, 3rd ed. New York, New York, USA; Academic Press: 2008.

  • 3.

    Rodriguez RJ, White JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. N. Phytol. 2009;182:314–30.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Arnold AE, Herre EA. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia. 2003;95:388–98.

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Bailey JK, Deckert R, Schweitzer JA, Rehill BJ, Lindroth RL, Gehring C, et al. Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Can J Bot. 2005;83:356–61.

    Article 

    Google Scholar 

  • 6.

    Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA. 2003;100:15649–54.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Giauque H, Connor EW, Hawkes CV. Endophyte traits relevant to stress tolerance, resource use, and habitat of origin predict effects on host plants. N. Phytol. 2018;221:2239–49.

    Article 
    CAS 

    Google Scholar 

  • 8.

    Aschehoug E, Callaway R, Newcombe G, Tharayil N, Chen S. Fungal endophyte increases the allelopathic effects of an invasive forb. Oecologia. 2012;93:285–91.

    Google Scholar 

  • 9.

    U’Ren JM, Arnold AE. Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America. PeerJ. 2016;4:e2768.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Sarmiento C, Zalamea PC, Dalling JW, Davis AS, Stump SM, U’Ren JM, et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc Natl Acad Sci USA. 2017;114:11458–63.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Song Z, Kennedy PG, Liew FJ, Schilling JS. Fungal endophytes as priority colonizers initiating wood decomposition. Funct Ecol. 2017;31:407–18.

    Article 

    Google Scholar 

  • 13.

    Patterson A, Flores-Rentería L, Whipple A, Whitham T, Gehring C. Common garden experiments disentangle plant genetic and environmental contributions to ectomycorrhizal fungal community structure. N. Phytol. 2018;221:493–502.

    Article 
    CAS 

    Google Scholar 

  • 14.

    Bonan GB. Forests and climate change: Forcings, feedbacks, and the climate benefit of forests. Science. 2008;320:1444–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    USGCRP. Climate Science Special Report: Fourth National Climate Assessment, Volume I. Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, editors. Washington, DC, USA: U.S. Global Change Research Program; 2017. p. 470.

  • 16.

    van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, et al. Widespread increase of tree mortality rates in the western United States. Science. 2009;323:521–4.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Ganey JL, Vojta SC. Tree mortality in drought-stressed mixed-conifer and Ponderosa pine forests, Arizona, USA. Ecol Manag. 2011;261:162–8.

    Article 

    Google Scholar 

  • 18.

    Mathys A, Coops NC, Waring RH. Soil water availability effects on the distribution of 20 tree species in western North America. Ecol Manag. 2014;313:144–52.

    Article 

    Google Scholar 

  • 19.

    Roberts DR, Hamann A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Philos Trans R Soc Lond B Biol Sci. 2015;282:20142903.

    Google Scholar 

  • 20.

    Peltier DMP, Ogle K. Legacies of more frequent drought in Ponderosa pine across the western United States. Glob Change Biol. 2019;25:3803–16.

    Article 

    Google Scholar 

  • 21.

    McClaran MP, Brady WW. Arizona’s diverse vegetation and contributions to plant ecology. Rangelands. 1994;16:208–18.

    Google Scholar 

  • 22.

    Moir WH, Geils B, Benoit MA, Scurlock D. Ecology of southwestern Ponderosa pine forests. In: Block WM, Finch DM, tech. cords. Songbird ecology in southwestern Ponderosa pine forests: a literature review. Tucson AZ. Fort Collins CO: USDA Forest Service General Technical Report RM GTR-292, Rocky Mountain Forest and Range Experiment Station; 1997. pp. 3–17.

  • 23.

    Felger RS, Johnson MB. Trees of the northern Sierra Madre Occidental and sky islands of southwestern North America. In: DeBano FL, Ffolliott PF, Ortega-Rubio A, Gottfried GJ, Hamre RH, editors. Biodiversity and management of the Madrean Archipelago: The sky islands of southwestern United States and northwestern Mexico. Fort Collins, Colorado, USA: U.S. Department of Agriculture, U.S. Forest Service, Rocky Mountain Forest and Range Experiment Station; 1995. pp 71–83.

  • 24.

    Willyard A, Gernandt DS, Potter K, Hipkins V, Marquardt P, Mahalovich MF, et al. Pinus Ponderosa: a checkered past obscured four species. Am J Bot. 2017;104:161–81.

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Massimo NC, Devan MMN, Arendt KR, Wilch MH, Riddle JM, Furr SH, et al. Fungal endophytes in above-ground tissues of desert plants: infrequence in culture, but highly diverse and distinctive symbionts. Micro Ecol. 2015;70:1–76.

    Article 
    CAS 

    Google Scholar 

  • 26.

    Huang YL, Bowman EA, Massimo NC, Garber NP, U’Ren JM, Sandberg DC, et al. Using collections data to infer biogeographic, environmental, and host structure in communities of endophytic fungi. Mycologia. 2018;110:47–62.

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Bowman EA, Arnold AE. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient. Am J Bot. 2018;105:687–99.

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Bowman EA, Hayden DR, Arnold AE. Fire and local factors shape ectomycorrhizal fungal communities associated with Pinus ponderosa in mountains of the Madrean Sky Island Archipelago. Fungal Ecol. 2020;49:101013.

    Article 

    Google Scholar 

  • 29.

    Huang Y, Nandi Devan MM, U’Ren JM, Furr SH, Arnold AE. Pervasive effects of wildfire on foliar endophyte communities in montane forest trees. Micro Ecol. 2016;71:452–68.

    Article 

    Google Scholar 

  • 30.

    U’Ren JM, Lutzoni F, Miadlikowska J, Zimmerman NB, Carbone I, May G, et al. Host availability drives distributions of fungal endophytes in the imperiled boreal forest. Nat Ecol Evol. 2019;3:1–8.

    Article 

    Google Scholar 

  • 31.

    Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M. A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett. 2007;10:470–80.

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Peay KG, Schubert MG, Nguyen NH, Bruns TD. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol. 2012;21:4122–36.

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Galante TE, Horton TR, Swaney DP. 95% of basidiospores fall within 1 m of the cap: a field-and modeling-based study. Mycologia. 2011;103:1175–83.

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Oono R, Rasmussen A, Lefèvre E. Distance decay relationships in foliar fungal endophytes are driven by rare taxa. Environ Microbiol. 2017;19:2794–805.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Fick SE, Hijmans RJ. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15.

    Article 

    Google Scholar 

  • 36.

    Lilleskov E, Bruns TD, Horton TR, Taylor DL, Grogan P. Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol. 2004;49:319–32.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Shinneman DJ, Means RE, Potter KM, Hipkins VD. Exploring climate niches of Ponderosa pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the western united states: implications for evolutionary history and conservation. PLoS One. 2016;11:e0151811.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Agerer R. Characterization of ectomycorrhiza. Methods Microbiol. 1991;23:25–73.

    Article 

    Google Scholar 

  • 39.

    Agerer R. Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B, editor. Mycorrhiza. Berlin, Heidelberg, Germany: Springer; 1995. p 685–734.

  • 40.

    Agerer R. Exploration types of ectomycorrhizae. Mycorrhiza. 2001;11:107–14.

    Article 

    Google Scholar 

  • 41.

    Izzo A, Agbowo J, Bruns TD. Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. N. Phytol. 2005;166:619–29.

    Article 

    Google Scholar 

  • 42.

    Smith ME, Douhan GW, Rizzo DM. Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus woodland. Mycorrhiza. 2007;18:15–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Monacell JT, Carbone I. Mobyle SNAP Workbench: A web-based analysis portal for population genetics and evolutionary genomics. Bioinformatics. 2014;30:1488–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R. Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia. 2007;99:185–206.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Oita S, Carey J, Kline I, Ibáñez A, Yang N, Hom EFY, et al. Methodological approaches frame insights into endophyte richness and community composition. Microb Ecol. 2021; https://doi.org/10.1007/s00248-020-01654-y.

  • 46.

    U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot. 2012;99:898–914.

    PubMed 
    Article 

    Google Scholar 

  • 47.

    U’Ren JM, Dalling JW, Gallery RE, Maddison DR, Davis EC, Gibson CM, et al. Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. Mycol Res. 2009;113:432–49.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 48.

    U’Ren JM, Arnold AE. DNA Extraction Protocol for Plant and Lichen Tissues Stored in CTAB. 2017a; https://doi.org/10.17504/protocols.io.fs8bnhw.

  • 49.

    U’Ren JM, Arnold AE. Illumina MiSeq Dual-barcoded Two-step PCR Amplicon Sequencing Protocol. 2017b; https://doi.org/10.17504/protocols.io.fs9bnh6.

  • 50.

    Daru BH, Bowman EA, Pfister DH, Arnold AE. A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos Trans R Soc Lond B Biol Sci. 2018;374:1–10.

    Google Scholar 

  • 51.

    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.

    CAS 
    Article 

    Google Scholar 

  • 52.

    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York, USA: Academic Press; 1990. pp. 315–22.

  • 53.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS 
    Article 

    Google Scholar 

  • 54.

    Andrew S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

  • 55.

    Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93:2533–47.

    PubMed 
    Article 

    Google Scholar 

  • 57.

    Okazaki Y, Fujinaga S, Tanaka A, Kohzu A, Oyagi H, Nakano S. Ubiquity and quantitative significance of bacterioplankton lineages inhabiting the oxygenated hypolimnion of deep freshwater lakes. ISME J. 2017;11:2279–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Ngyuen NH, Smith D, Peay K, Kennedy P. Parsing ecological signal from noise in next generation amplicon sequencing. N. Phytol. 2015;205:1389–93.

    Article 
    CAS 

    Google Scholar 

  • 59.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Huson DH, Mitra S, Ruscheweyh H-J, Weber N, Schuster SC. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 2011;21:1552–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Carbone I, White JB, Miadlikowska J, Arnold AE, Miller MA, Magain N, et al. T-BAS version 2.1: Tree-Based Alignment Selector toolkit for evolutionary placement of DNA sequences and viewing alignments and specimen metadata on curated and custom trees. Microbiol Resour Announc. 2019;8:e00328–19.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Legendre P, Legendre L. Numerical Ecology, 3rd ed. Amsterdam, the Netherlands: Elsevier; 2012.

  • 64.

    Dray S, Legendre P, Peres-Neto PR. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model. 2006;196:483–93.

    Article 

    Google Scholar 

  • 65.

    Legendre P, Borcard D, Roberts DW. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology. 2012;93:1234–40.

    PubMed 
    Article 

    Google Scholar 

  • 66.

    Lichstein J. Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 2007;188:117–31.

    Article 

    Google Scholar 

  • 67.

    Gower JC. A general coefficient of similarity and some of its properties. Biometrics. 1971;27:857–74.

    Article 

    Google Scholar 

  • 68.

    Zimmerman N, Vitousek P. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci USA. 2012;109:13022–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Garfin G, Jardine A, Merideth R, Black M, LeRoy S. Assessment of climate change in the southwest United States: a report prepared for the National Climate Assessment. Washington, DC, USA: Island Press; 2013.

  • 70.

    Rehfeldt GE, Jaquish BC, López-Upton J, Sáenz-Romero C, St. Clair JB, Leites LP, et al. Comparative genetic responses to climate for the varieties of Pinus ponderosa and Pseudotsuga menziesii: Realized climate niches. Ecol Manag. 2014;324:126–37.

    Article 

    Google Scholar 

  • 71.

    Vander Wall SB. On the relative contributions of wind versus animals to seed dispersal of four Sierra Nevada pines. Ecology. 2008;89:1837–49.

    Article 

    Google Scholar 

  • 72.

    Timling I, Dahlberg A, Walker DA, Gardes M, Charcosset JY, Welker JM, et al. Distribution and drivers of ectomycorrhizal fungal communities across the North American Artic. Ecosphere. 2012;3:3258–72.

    Article 

    Google Scholar 

  • 73.

    Bruns TD, Bidartondo MI, Taylor DL. Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol. 2002;42:352–9.

    PubMed 
    Article 

    Google Scholar 

  • 74.

    Izzo A, Agbowo J, Bruns TD. Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. N. Phytol. 2005;2:619–30.

    Article 

    Google Scholar 

  • 75.

    Talbot JM, Bruns TD, Smith DP, Branco S, Glassman SI, Erlandson S, et al. Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol Biochem. 2013;57:282–91.

    CAS 
    Article 

    Google Scholar 

  • 76.

    Matsuoka S, Mori AS, Kawaguchi E, Hobara S, Osono T. Disentangling the relative importance of host tree community, abiotic environment, and spatial factors on ectomycorrhizal fungal assemblages along an elevation gradient. FEMS Microbiol Ecol. 2016;92:fiw044.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 77.

    Varenius K, Lindahl BD, Dahlberg A. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests. FEMS Microbiol Ecol. 2017;93:fix105.

    Google Scholar 

  • 78.

    Harrison JG, Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ Microbiol. 2020;22:2107–23.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Oita S, Ibánez A, Lutzoni F, Miadlikowska J, Geml J, Lewis LA, et al. Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Commun Biol. 2021;4:313.

  • 80.

    Saunders M, Glenn AE, Kohn LM. Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes. Evol Appl. 2010;3:525–37.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Lau MK, Arnold AE, Johnson NC. Factors influencing communities of foliar fungal endophytes in riparian woody plants. Fungal Ecol. 2013;6:365–78.

    Article 

    Google Scholar 

  • 82.

    U’Ren JM, Riddle JM, Monacell JT, Carbone I, Miadlikowska J, Arnold AE. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi. Mol Ecol Resour. 2014;14:1032–48.

    PubMed 

    Google Scholar 

  • 83.

    Oono R, Lefèvre E, Simha A, Lutzoni F. A comparison of the community diversity of foliar fungal endophytes between seedlings and adult loblolly pines (Pinus taeda). Fungal Biol. 2015;119:1–12.

    Article 

    Google Scholar 

  • 84.

    Raizen NL Fungal endophyte diversity in foliage of native and cultivated Rhododendron species determined by culturing, ITS sequencing, and pyrosequencing. Master’s Thesis. Corvallis, USA: Oregon State University; 2013.

  • 85.

    Higgins KL, Coley PD, Kursar TA, Arnold AE. Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses. Mycologia. 2011;103:247–60.

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Harrington AH, Del Olmo-Ruiz M, U’Ren JM, Garcia K, Pignatta D, Wespe N, et al. Coniochaeta endophytica sp. nov., a foliar endophyte associated with healthy photosynthetic tissue of Platycladus orientalis (Cupressaceae). Plant Fungal Syst. 2019;64:65–79.

    Article 

    Google Scholar 

  • 87.

    Ganley RJ, Newcombe G. Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res. 2006;110:318–27.

    PubMed 
    Article 

    Google Scholar 

  • 88.

    Gray AE. A molecular characterization of the fungal endophytes within the needles of ponderosa pine (Pinus ponderosa). M.S. thesis. Cheney, WA: Eastern Washington University; 2016.

  • 89.

    Hinejima M, Hobson KR, Otsuka T, Wood DL, KuBo I. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: a defense mechanism against microbial invasion. J Chem Ecol. 1992;18:1809–18.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Beating in on a stable partnership

    Tiny particles power chemical reactions